
Mapping Toolbox™ 3
User’s Guide

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Mapping Toolbox™ User’s Guide

© COPYRIGHT 1997–2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
May 1997 First printing New for Version 1.0
October 1998 Second printing Version 1.1
November 2000 Third printing Version 1.2 (Release 12)
July 2002 Online only Revised for Version 1.3 (Release 13)
September 2003 Online only Revised for Version 1.3.1 (Release 13SP1)
January 2004 Online only Revised for Version 2.0 (Release 13SP1+)
April 2004 Online only Revised for Version 2.0.1 (Release 13SP1+)
June 2004 Fourth printing Revised for Version 2.0.2 (Release 14)
October 2004 Online only Revised for Version 2.0.3 (Release 14SP1)
March 2005 Fifth printing Revised for Version 2.1 (Release 14SP2)
August 2005 Sixth printing Minor revision for Version 2.1
September 2005 Online only Revised for Version 2.2 (Release 14SP3)
March 2006 Online only Revised for Version 2.3 (Release 2006a)
September 2006 Seventh printing Revised for Version 2.4 (Release 2006b)
March 2007 Online only Revised for Version 2.5 (Release 2007a)
September 2007 Eighth printing Revised for Version 2.6 (Release 2007b)
March 2008 Online only Revised for Version 2.7 (Release 2008a)
October 2008 Online only Revised for Version 2.7.1 (Release 2008b)
March 2009 Online only Revised for Version 2.7.2 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.2 (Release 2010b)
April 2011 Online only Revised for Version 3.3 (Release 2011a)

Contents

Getting Started

1
Product Overview . 1-2

Dedication and Acknowledgment 1-3

Your First Maps . 1-4
See the World . 1-4
Tour Boston with the Map Viewer . 1-9

Getting More Help . 1-26
Ways to Get Mapping Toolbox Help 1-26
Consulting Release Notes . 1-26

Mapping Toolbox Demos and Data 1-27
Available Demos . 1-27
Locating Geospatial Data . 1-28

Understanding Map Data

2
Maps and Map Data . 2-2
What Is a Map? . 2-2
What Is Geospatial Data? . 2-2

Types of Map Data Handled by the Toolbox 2-4
Vector Geodata . 2-4
Raster Geodata . 2-7
Combining Vector and Raster Geodata 2-10

Understanding Vector Geodata . 2-13

v

Points, Lines, and Polygons . 2-13
Segments Versus Polygons . 2-19
Mapping Toolbox Geographic Data Structures 2-21
Selecting Data to Read with the shaperead Function 2-32

Understanding Raster Geodata . 2-38
Georeferencing Raster Data . 2-38
Regular Data Grids . 2-39
Geolocated Data Grids . 2-46

Reading and Writing Geospatial Data 2-54
Functions that Read and Write Geospatial Data 2-54
Exporting Vector Geodata . 2-59
Functions That Read and Write Files in Compressed
Formats . 2-69

Understanding Geospatial Geometry

3
Understanding Spherical Coordinates 3-2
Spheres, Spheroids, and Geoids . 3-2
Geoid and Ellipsoid . 3-2
The Ellipsoid Vector . 3-4

Understanding Latitude and Longitude 3-11

Understanding Angles, Directions, and Distances 3-14
Positions, Azimuths, Headings, Distances, Length, and
Ranges . 3-14

Working with Length and Distance Units 3-15
Working with Angles: Units and Representations 3-18
Working with Distances on the Sphere 3-23
Angles as Binary and Formatted Numbers 3-27

Understanding Map Projections . 3-29
What Is a Map Projection? . 3-29
Forward and Inverse Projection . 3-30
Projection Distortions . 3-30

vi Contents

Great Circles, Rhumb Lines, and Small Circles 3-32
Great Circles . 3-32
Rhumb Lines . 3-32
Small Circles . 3-33

Directions and Areas on the Sphere and Spheroid 3-38
About Azimuths . 3-38
Reckoning — The Forward Problem 3-38
Distance, Azimuth, and Back-Azimuth (the Inverse
Problem) . 3-41

Measuring Area of Spherical Quadrangles 3-44

Planetary Almanac Data . 3-46

Creating and Viewing Maps

4
Introduction to Mapping Graphics 4-2

Using worldmap and usamap . 4-4
Continent, Country, Region, and State Maps Made Easy . . 4-4
Using worldmap . 4-5
Using usamap . 4-7

Axes for Drawing Maps . 4-12
What Is a Map Axes? . 4-12
Using axesm . 4-13
Accessing and Manipulating Map Axes Properties 4-14
Using the Map Limit Properties . 4-19
Switching Between Projections . 4-34
Projected and Unprojected Graphic Objects 4-39

Controlling Map Frames and Grids 4-48
The Map Frame . 4-48
The Map Grid . 4-55

Displaying Vector Data with Mapping Toolbox
Functions . 4-60

vii

Programming and Scripting Map Construction 4-60
Displaying Vector Data as Points and Lines 4-60
Displaying Vector Maps as Lines or Patches 4-63

Displaying Data Grids . 4-70
Types of Data Grids and Raster Display Functions 4-70
Fitting Gridded Data to the Graticule 4-71
Using Raster Data to Create 3-D Displays 4-74

Interacting with Displayed Maps . 4-78
Picking Locations Interactively . 4-78
Defining Small Circles and Tracks Interactively 4-80
Working with Objects by Name . 4-83

Making Three-Dimensional Maps

5
Sources of Terrain Data . 5-2
Digital Terrain Elevation Data from NGA 5-2
Digital Elevation Model Files from USGS 5-3
Determining What Elevation Data Exists for a Region . . . 5-3

Reading Elevation Data Interactively 5-13
Extracting DEM Data with demdataui 5-13

Determining and Visualizing Visibility Across
Terrain . 5-19
Computing Line of Sight with los2 . 5-19

Shading and Lighting Terrain Maps 5-21
Lighting a Terrain Map Constructed from a DTED File . . 5-21
Lighting a Global Terrain Map with lightm and
lightmui . 5-24

Surface Relief Shading . 5-27
Colored Surface Shaded Relief . 5-31
Relief Mapping with Light Objects 5-34

Draping Data on Elevation Maps . 5-38

viii Contents

Draping Geoid Heights over Topography 5-38
Draping Data over Terrain with Different Gridding 5-41

Working with the Globe Display . 5-47
What Is the Globe Display? . 5-47
The Globe Display Compared with the Orthographic
Projection . 5-48

Using Opacity and Transparency in Globe Displays 5-50
Over-the-Horizon 3-D Views Using Camera Positioning
Functions . 5-53

Displaying a Rotating Globe . 5-55

Customizing and Printing Maps

6
Inset Maps . 6-2

Graphic Scales . 6-8

North Arrows . 6-14

Thematic Maps . 6-17
What Is a Thematic Map? . 6-17
Choropleth Maps . 6-18
Special Thematic Mapping Functions 6-20

Using Colormaps and Colorbars . 6-24
Colormap for Terrain Data . 6-24
Contour Colormaps . 6-27
Colormaps for Political Maps . 6-29
Labeling Colorbars . 6-33
Editing Colorbars . 6-34

Printing Maps to Scale . 6-35

ix

Manipulating Geospatial Data

7
Manipulating Vector Geodata . 7-2
Repackaging Vector Objects . 7-2
Matching Line Segments . 7-4
Geographic Interpolation of Vectors 7-5
Vector Intersections . 7-8
Polygon Area . 7-11
Overlaying Polygons with Set Logic 7-12
Cutting Polygons at the Date Line . 7-17
Building Buffer Zones . 7-19
Trimming Vector Data to a Rectangular Region 7-21
Trimming Vector Data to an Arbitrary Region 7-24
Simplifying Vector Coordinate Data 7-25

Manipulating Raster Geodata . 7-31
Vector-to-Raster Data Conversion . 7-31
Data Grids as Logical Variables . 7-39
Data Grid Values Along a Path . 7-41
Data Grid Gradient, Slope, and Aspect 7-43

Using Map Projections and Coordinate Systems

8
What Is a Map Projection? . 8-2

Quantitative Properties of Map Projections 8-3

The Three Main Families of Map Projections 8-5
Unwrapping the Sphere to a Plane 8-5
Cylindrical Projections . 8-5
Conic Projections . 8-7
Azimuthal Projections . 8-8

Projection Aspect . 8-10
The Orientation Vector . 8-10

x Contents

Projection Parameters . 8-18
Projection Characteristics Maps Can Have 8-18

Visualizing and Quantifying Projection Distortions . . . 8-27
Displays of Spatial Error in Maps . 8-27
Quantifying Map Distortions at Point Locations 8-31

Accessing, Computing, and Inverting Map Projection
Data . 8-37
Accessing Projected Coordinate Data 8-37
Projecting Coordinates Without a Map Axes 8-39
Inverse Map Projection . 8-41
Coordinate Transformations . 8-45

Working with the UTM System . 8-51
What Is the Universal Transverse Mercator System? 8-51
Understanding UTM Parameters . 8-52
Setting UTM Parameters with a GUI 8-54
Working in UTM Without a Map Axes 8-59
Mapping Across UTM Zones . 8-60

Summary and Guide to Projections 8-63

Creating Web Map Service Maps

9
Introduction to Web Map Service 9-2
What Web Map Service Servers Provide 9-2
Basic WMS Terminology . 9-4

Basic Workflow for Creating WMS Maps 9-5
Workflow Summary . 9-5
Creating a Map of Elevation in Europe 9-5

Searching the WMS Database . 9-8
Introduction to the WMS Database 9-8
Finding Temperature Data . 9-9

xi

Refining Your Search . 9-11
Refining by Text String . 9-11
Refining by Geographic Limits . 9-12

Updating Your Layer . 9-13

Retrieving Your Map . 9-15
Ways to Retrieve Your Map . 9-15
Understanding Coordinate Reference System Codes 9-16
Retrieving Your Map with wmsread 9-16
Setting Optional Parameters . 9-17
Adding a Legend to Your Map . 9-19
Retrieving Your Map with WebMapServer.getMap 9-28

Modifying Your Request . 9-34
Setting the Geographic Limits and Time 9-34
Manually Editing a URL . 9-36

Overlaying Multiple Layers . 9-39
Creating a Composite Map of Multiple Layers from One
Server . 9-39

Combining Layers from One Server with Data from Other
Sources . 9-42

Draping Topography and Ortho-Imagery Layers over a
Digital Elevation Model Layer . 9-44

Animating Data Layers . 9-49
Creating Movie of Terra/MODIS Images 9-49
Creating an Animated GIF File . 9-51
Animating Time-Lapse Radar Observations 9-54
Displaying Animation of Radar Images over GOES
Backdrop . 9-57

Retrieving Elevation Data . 9-60
Merge Elevation Data with Rasterized Vector Data 9-60
Display a Merged Elevation and Bathymetry Layer
(SRTM30 Plus) . 9-63

Drape a Landsat Image onto Elevation Data 9-67

Saving Favorite Servers . 9-70

xii Contents

Exploring Other Layers from a Server 9-72

Writing a KML File . 9-75

Searching for Layers Outside the Database 9-77

Hosting Your Own WMS Server . 9-78

Common Problems with WMS Servers 9-79
Connection Errors . 9-79
Wrong Scale . 9-81
Problems with Geographic Limits . 9-82
Problems with Server Changing LayerName 9-82
Non-EPSG:4326 Coordinate Reference Systems 9-83
Map Not Returned . 9-83
Unsupported WMS Version . 9-84
Other Unrecoverable Server Errors 9-85

Mapping Applications

10
Geographic Statistics . 10-2
Statistics for Point Locations on a Sphere 10-2
Geographic Means . 10-2
Geographic Standard Deviation . 10-4
Equal-Areas in Geographic Statistics 10-7

Navigation . 10-11
What Is Navigation? . 10-11
Conventions for Navigational Functions 10-12
Fixing Position . 10-13
Planning the Shortest Path . 10-25
Track Laydown – Displaying Navigational Tracks 10-29
Dead Reckoning . 10-31
Drift Correction . 10-36
Time Zones . 10-38

xiii

Map Projections Reference

11
Cylindrical Projections . 11-2

Pseudocylindrical Projections . 11-2

Conic Projections . 11-4

Polyconic and Pseudoconic Projections 11-4

Azimuthal, Pseudoazimuthal, and Modified Azimuthal
Projections . 11-4

UTM and UPS Systems . 11-5

3-D Globe Display . 11-5

xiv Contents

Map Projections — Alphabetical List

12

Glossary

Bibliography

A

Examples

B
Your First Maps . B-2

Understanding Vector Geodata . B-2

Understanding Raster Geodata . B-2

Combining Vector and Raster Geodata B-2

Geolocated Data Grids . B-2

Exporting Vector Geodata . B-3

Understanding Geospatial Geometry B-3

Creating and Viewing Maps . B-3

Making Three-Dimensional Maps B-4

xv

Customizing and Printing Maps . B-4

Using Colormaps and Colorbars . B-5

Vector Data Manipulation . B-5

Raster Data Manipulation . B-5

Projections and Transformations B-5

Web Map Service Maps . B-6

Navigation . B-7

Index

xvi Contents

1

Getting Started

• “Product Overview” on page 1-2

• “Dedication and Acknowledgment” on page 1-3

• “Your First Maps” on page 1-4

• “Getting More Help” on page 1-26

• “Mapping Toolbox Demos and Data” on page 1-27

1 Getting Started

Product Overview
Mapping Toolbox™ provides tools and utilities for analyzing geographic data
and creating map displays. You can import vector and raster data from
shapefile, GeoTIFF, SDTS DEM, and other file formats, as well as Web-based
data from Web Map Service (WMS) servers. The toolbox lets you customize
the imported data by subsetting, trimming, intersecting, adjusting spatial
resolution, and applying other methods. Geographic data can be combined
with base map layers from multiple sources in a single map display. With
function-level access to all key features, you can automate frequent tasks
in your geospatial workflow.

Briefly summarized, the toolbox provides functionality in the following areas:

• Vector and raster data import and export from standard formats and
specific data products

• Data retrieval from Web Map Service (WMS) servers for customized
geographic datasets and related metadata

• Digital terrain and elevation model analysis functions, including profile,
gradient, line-of-sight, and viewshed calculations

• Geometric geodesy, including distance and area calculations, 3D coordinate
transformations, and more than 65 map projections

• Utilities for converting units, adjusting spatial resolution, wrapping
longitudes, and managing spatially referenced images and raster data

• 2D and 3D map display, customization, and interaction

This chapter provides step-by-step examples of basic Mapping Toolbox
capabilities and guides you toward demos and documentation that can help
answer your questions. For a complete classified list of Mapping Toolbox
functions and features, see “Function Reference”.

1-2

Dedication and Acknowledgment

Dedication and Acknowledgment
In memory of John P. Snyder (1926–97), whose meticulous studies and
systematic descriptions of map projections inspired and enabled the creation
of Mapping Toolbox software.

This software was originally developed and maintained through Version 1.3
by Systems Planning and Analysis, Inc. (SPA), of Alexandria, Virginia.

Except where noted, the information contained in demo and sample data files
(found in toolbox/map/mapdemos) is derived from publicly available digital
data sets. These data files are provided as a convenience to Mapping Toolbox
users. MathWorks makes no claims that any of this data is free of defects or
errors, or that the representations of geographic features or names are up to
date or authoritative.

1-3

1 Getting Started

Your First Maps

In this section...

“See the World” on page 1-4

“Tour Boston with the Map Viewer” on page 1-9

This section helps you exercise high-level functions and GUIs to map and
display geodata. It introduces worldmap and other basic functions, and then
describes how to use the Map Viewer (mapview).

See the World
Spatial data refers to data describing location, shape, and spatial
relationships. Geospatial data is spatial data that is in some way
georeferenced, or tied to specific locations on, under, or above the surface
of a planet.

Geospatial data can be voluminous, complex, and difficult to process. Mapping
Toolbox functions handle many of the details of loading and displaying data,
and built-in data structures facilitate data storage. Nevertheless, the more
you understand about your data and the capabilities of the toolbox, the more
interesting applications you can pursue, and the more useful your results will
be to you and others.

Follow this example to create your first world map.

1 In the MATLAB® Command Window, type

worldmap world

This creates an empty map axes, ready to hold the data of your choice.

1-4

Your First Maps

Function worldmap automatically selects a reasonable choice for your map
projection and coordinate limits. In this case, it chose a Robinson projection
centered on the prime meridian and the equator (0º latitude, 0º longitude).

If you type worldmap without an argument, a list box appears from which
you can select a country, continent, or region. The worldmap function then
generates a map axes with appropriate projection and map limits.

2 Import low-resolution world coastlines—a set of discrete vertices that, when
connected in the order given, approximate the coastlines of continents,
major islands, and inland seas. The vertex latitudes and longitudes are
stored as MATLAB vectors in a MAT-file. First, list the variables in the file:

whos -file coast.mat

The output is shown below:

Name Size Bytes Class Attributes

lat 9865x1 78920 double
long 9865x1 78920 double

3 Load and plot the coastlines on the world map:

load coast
plotm(lat, long)

1-5

1 Getting Started

The plotm function is a geographic equivalent to the MATLAB plot
function. It accepts coordinates in latitude and longitude, transforms them
to x and y via a specified map projection, and displays them in a figure axes.
In this example, worldmap specifies the projection.

Note Certain Mapping Toolbox functions that end with m, such as plotm
and textm, are modeled after familiar MATLAB functions that handle
non-geographic coordinate data.

4 Notice how the world coastlines form distinct polygons, even though only
a single vector of latitudes and a corresponding vector of longitudes are
provided. The display breaks into separate parts like this because in the
vectors lat and long the vertices of various coastlines are concatenated
together but separated by isolated NaN-valued elements. In other words,
“NaN separators” implicitly divide each vector into multiple parts. lat and
long include “NaN terminators” as well as separators, showing that the
coast data set is organized into precisely 241 polygons.

Enter the following code to break out your data into its NaN-separated
parts:

[latcells, loncells] = polysplit(lat, long);
numel(latcells)

latcells and loncells are cell vectors, with each cell containing the
vertices of just one polygon part. The number of parts appears:

1-6

Your First Maps

ans =
241

5 Now create a new map axes for plotting data over Europe, and this time
specify a return argument:

h = worldmap('Europe');

For the map of the world, worldmap chose a pseudocylindrical Robinson
projection. For Europe, it chose an Equidistant Conic projection. How can
you tell which projection worldmap is using?

When you specify a return argument for worldmap and certain other
mapping functions, a handle (e.g., h) to the figure’s axes is returned.
The axes object on which map data is displayed is called a map axes. In
addition to the graphics properties common to any MATLAB axes object,
a map axes object contains additional properties covering map projection
type, projection parameters, map limits, etc. The getm and setm functions
and others allow you to access and modify these properties.

6 To inspect the MapProjection property for the map of Europe, type:

getm(h, 'MapProjection')

1-7

1 Getting Started

The type of projection appears:

ans =
eqdconic

If you’re not familiar with the abbreviation “eqdconic,” type:

help eqdconic

To see all the map-specific properties for this map axes, type:

getm(h)

7 Add data to the map of Europe by using the geoshow function to import and
display several shapefiles in the toolbox/map/mapdemos folder:

geoshow('landareas.shp', 'FaceColor', [0.15 0.5 0.15])
geoshow('worldlakes.shp', 'FaceColor', 'cyan')
geoshow('worldrivers.shp', 'Color', 'blue')
geoshow('worldcities.shp', 'Marker', '.',...

'Color', 'red')

Note how geoshow can plot data directly from files onto a map axes without
first importing it into the MATLAB workspace.

1-8

Your First Maps

8 Finally, place a label on the map to identify the Mediterranean Sea.

labelLat = 35;
labelLon = 14;
textm(labelLat, labelLon, 'Mediterranean Sea')

To learn more about display properties for map axes and how to control them,
see “Accessing and Manipulating Map Axes Properties” on page 4-14.

Tour Boston with the Map Viewer
The Map Viewer is an interactive tool for browsing map data. With it you can
assemble layers of vector and raster geodata and render them in 2-D. You can
import, reorder, symbolize, hide, and delete data layers; identify coordinate
locations; and list data attributes. You can display selected data attributes
as datatips (signposts that identify attribute values, such as place names or
route numbers). The following exercise shows how the Map Viewer works
and what it can do.

A Map Viewer Session

1 Start a Map Viewer session by typing

1-9

1 Getting Started

mapview

at the MATLAB prompt. The Map Viewer opens with a blank canvas. (No
data is present.) The viewer and its tools are shown below.

�����
���	�

�
�
�
�����������

�
�
�
��
�

����
��

����
�	�

���

���
��
�
��

���
��
�����

���
��
���

��������

����

�����
��
�

������
������

����������������

�
���	��

�������
 ���������
�	���
���� ����

�	��
���!�����

��!
������ ����

Most of the tool buttons can also be activated from the Tools menu.

In the Map Viewer graphic, you can see arrows pointing to the X and Y
coordinate readouts. The Map Viewer is designed primarily for working
with data sets that refer to a projected map coordinate system (as opposed
to a geographic, latitude-longitude system), so the coordinate axes are
named X and Y.

2 For ease in importing Mapping Toolbox demo data, set your working folder.
Type the following in the Command Window:

cd(fullfile(matlabroot,'toolbox','map','mapdemos'))

1-10

Your First Maps

3 You can also navigate to this folder with the Map Viewer Import Data dialog
if you prefer. In the Map Viewer, select the File menu and then choose
Import From File. Open the GeoTIFF file boston.tif, as shown below.

The file opens in the Map Viewer. The image is a visible red, green, and blue
composite from a georeferenced IKONOS-2 panchromatic/multispectral
product created by GeoEye™. Copyright © GeoEye, all rights reserved. For
further information about the image, refer to the text files boston.txt
and boston_metadata.txt. To open boston.txt, type the following at
the command line:

open 'boston.txt'

4 To see the map scale in the Map Viewer, set the map distance units. Use
the drop-down Map units menu at the bottom center to select US Survey
Feet.

5 Now set the scale to 1:25,000 by typing 1:25000 in the Scale box, which is
above theMap units drop-down. The Map Viewer now looks like this.

1-11

1 Getting Started

�������

The cursor in the picture has been placed so that it points at the front of
the Massachusetts State House (capitol building). The map coordinates for
this location are shown in the readout at the lower left as 774,114.36
feet easting (X), 2,955,685.56 feet northing (Y), in Massachusetts State
Plane coordinates.

6 Next, enter the following code to import a vector data layer, the streets and
highways in the central Boston area:

boston_roads = shaperead('boston_roads.shp');

The shaperead function reads the line shapefile boston_roads.shp into
the workspace as a geographic data structure. As is frequently the case
when overlaying geodata, the coordinate system used by boston_roads.shp
(in units of meters) does not completely agree with the one for the satellite

1-12

Your First Maps

image, boston.tif (in units of feet). If you were to ignore this, the two
data sets would be out of registration by a large distance.

7 Convert the X and Y coordinate fields of boston_roads.shp from meters to
U.S. survey feet:

surveyFeetPerMeter = unitsratio('survey feet','meter');
for k = 1:numel(boston_roads)

boston_roads(k).X = surveyFeetPerMeter * boston_roads(k).X;
boston_roads(k).Y = surveyFeetPerMeter * boston_roads(k).Y;

end

The unitsratio function computes conversion factors between a variety of
units of length.

8 In the Map Viewer File menu, select Import From Workspace > Vector
Data > Geographic Data Structure. Specify boston_roads as the data
to import from the workspace, and click OK.

1-13

1 Getting Started

You could clear the workspace now if you wanted, because all the data that
the Map Viewer needs is now loaded into it.

9 After the Map Viewer finishes importing the roads layer, it selects a
random color and renders all the shapes with that color as solid lines. The
view looks like this.

1-14

Your First Maps

"���
���!
�

Being random, the color you see for the road layer may differ.

10 Use the Active layer drop-down menu at the bottom right to select
boston_roads. Changing the active layer has no visual effect. Doing so
allows you to query attributes of the layer you select. You can designate
any layer to be the active layer; it does not need to be the topmost layer. By
default, the first layer imported is active.

11 One way to see the attributes for a vector layer is to use the Info tool, a
button near the right end of the toolbar. Select the Info tool and click
somewhere along the bridge across the Charles River near the lower left
of the map. This opens a text window displaying the attributes of the
selected object.

1-15

1 Getting Started

����

The selected road is Massachusetts Avenue (Route 2A). As the above figure
shows, the boston_roads vectors have six attributes, including an implicit
INDEX attribute added by the Map Viewer.

12 Get information about some other roads. Dismiss open Info windows by
clicking their close boxes.

13 Choose an attribute for the Datatip tool to inspect. From the Layers
menu, select boston_roads > Set Label Attribute. From the list in the
Attribute Names dialog, select CLASS and click OK to dismiss it.

1-16

Your First Maps

14 Select the Datatip tool. The cursor assumes a crosshairs (+) shape. A
dialog box appears to remind you how to change attributes. Click OK to
dismiss the box.

15 Use the Datatip tool to identify the administrative class of any road
displayed. When you click on a road segment, a datatip is left in that place
to indicate the CLASS attribute of the active layer, as illustrated below.

1-17

1 Getting Started

�������

16 You can change how the roads are rendered by identifying an attribute to
which to key line symbology. Color roads according to their CLASS attribute,
which takes on the values 1:6. Do this by creating a symbolspec in the
workspace. A symbolspec is a cell array that associates attribute names
and values to graphic properties for a specified geometric class ('Point',
'MultiPoint', 'Line', 'Polygon', or 'Patch'). To create a symbolspec for
line objects (in this case roads) that have a CLASS attribute, type:

roadcolors = makesymbolspec('Line', ...
{'CLASS',1,'Color',[1 1 1]}, {'CLASS',2,'Color',[1 1 0]}, ...
{'CLASS',3,'Color',[0 1 0]}, {'CLASS',4,'Color',[0 1 1]}, ...
{'CLASS',5,'Color',[1 0 1]}, {'CLASS',6,'Color',[0 0 1]})

The following output appears:

roadcolors =

1-18

Your First Maps

ShapeType: 'Line'
Color: {6x3 cell}

17 The Map Viewer recognizes and imports symbolspecs from the workspace.
To apply the one you just created, from the Layers menu, select
boston_roads > Set Symbol Spec. From the Layer Symbols dialog, select
the roadcolors symbolspec you just created and click OK. After the Map
Viewer has read and applied the symbolspec, the map looks like this.

18 Remove the datatips before going on. To dismiss datatips, right-click one
of them and select Delete all datatips from the pop-up context menu
that appears.

19 Add another layer, a set of points that identifies 13 Boston landmarks. As
you did with the boston_roads layer, import it from a shapefile:

1-19

1 Getting Started

boston_placenames = shaperead('boston_placenames.shp');

20 The locations for these landmarks are given in meters, so you must convert
their coordinates to units of survey feet before importing them into Map
Viewer:

surveyFeetPerMeter = unitsratio('survey feet','meter');
for k = 1:numel(boston_placenames)

boston_placenames(k).X = ...
surveyFeetPerMeter * boston_placenames(k).X;

boston_placenames(k).Y = ...
surveyFeetPerMeter * boston_placenames(k).Y;

end

21 From the File menu, select Import From Workspace > Vector Data
> Geographic Data Structure. Choose boston_placenames as the data
to import from the workspace and click OK.

22 The boston_placenames markers are symbolized as small x markers, but
these markers do not show up over the orthophoto. To solve this problem,
create a symbolspec for the markers to represent them as red filled circles.
At the MATLAB command line, type:

places = makesymbolspec('Point',{'Default','Marker','o', ...
'MarkerEdgeColor','r','MarkerFaceColor','r'})

The following output appears:

places =

ShapeType: 'Point'
Marker: {'Default' '' 'o'}

MarkerEdgeColor: {'Default' '' 'r'}
MarkerFaceColor: {'Default' '' 'r'}

The Default keyword causes the specified symbol to be applied to all point
objects in a given layer unless specifically overridden by an attribute-coded
symbol in the same or a different symbolspec.

1-20

Your First Maps

23 To activate this symbolspec, pull down the Layers menu, select
boston_placenames, slide right, and select Set Symbol Spec. In the
Layer Symbols dialog that appears, highlight places and click OK.

The Map Viewer reads the workspace variable places; the cross marks
turn into red circles. Note that a layer need not be active in order for you
to apply a symbolspec to it.

24 Use the Active layer drop-down menu to make boston_placenames the
currently active layer, and then select the Datatip tool. Click any red
circle to see the name of the feature it marks. The map looks like this
(depending on which datatips you show).

25 Zoom in on Beacon Hill for a closer view of the Massachusetts State House
and Boston Common. Select the Zoom in tool; move the (magnifier) cursor
until the X readout is approximately 774,011 and the Y readout is roughly

1-21

1 Getting Started

2,955,615; and click once to enlarge the view. The scale changes to about
1:12,500 and the map appears as below.

�������

26 From the Tools menu, choose Select Annotations to change from the
Datatip tool back to the original cursor. Right-click any of the data tips
and select Delete all datatips from the pop-up context menu. This clears
the place names you added to the map.

27 Select an area of interest to save as an image file. Click the Select
area tool, and then hold the mouse button down as you draw a selection
rectangle. If you do not like the selection, repeat the operation until you
are satisfied. If you know what ground coordinates you want, you can use
the coordinate readouts to make a precise selection. The selected area
appears as a red rectangle.

1-22

Your First Maps

28 In order to be able to save a file in the next step, change your working
folder to a writable folder, such as /work.

29 Save your selection as an image file. From the File menu, select Save As
Raster Map > Selected Area to open an Export to File dialog.

In the Export to File dialog, navigate to a folder where you want to save
the map image, and save the selected area’s image as a .tif file, calling
it central_boston.tif. (PNG and JPG formats are also available.) A
worldfile, central_boston.tfw, is created along with the TIF.

Whenever you save a raster map in this manner, two files are created:

• An image file (file.tif, file.png, or file.jpg)

1-23

1 Getting Started

• An accompanying worldfile that georeferences the image (file.tfw,
file.pgw, or file.jgw)

The following steps show you how to read worldfiles and display a
georeferenced image outside of mapview.

30 Read in the saved image and its colormap with the MATLAB
function imread, create a referencing matrix for it by reading in
central_boston.tfw with worldfileread, and display the map with
mapshow:

[X cmap] = imread('central_boston.tif');
R = worldfileread('central_boston.tfw');
figure
mapshow(X, cmap, R);

See the documentation for mapshow for another example of displaying a
georeferenced image.

1-24

Your First Maps

31 Experiment with other tools and menu items. For example, you can
annotate the map with lines, arrows, and text; fit the map to the window;
draw a bounding box for any layer; and print the current view. You can
also spawn a new Map Viewer using New View from the File menu. A
new view can duplicate the current view, cover the active layer’s extent,
cover all layer extents, or include only the selected area, if any.

When you are through with a viewing session, close the Map Viewer using
the window’s close box or select Close from the File menu. For more
information about the Map Viewer, see the mapview reference page.

32 The two examples in the Getting Started chapter provide an introduction
to the Mapping Toolbox. To find out what else the toolbox can do, run the
demos described in “Mapping Toolbox Demos and Data” on page 1-27. If
you have a specific task in mind and want to see a similar problem solved,
search the index of examples.

1-25

1 Getting Started

Getting More Help

In this section...

“Ways to Get Mapping Toolbox Help” on page 1-26

“Consulting Release Notes” on page 1-26

Ways to Get Mapping Toolbox Help
Help is available for individual commands and classes of Mapping Toolbox
commands:

• help functionname for help on a specific function, often including examples

• doc functionname to read a function’s reference page in the Help browser,
including examples and illustrations

• help map for a list of functions by category

• mapdemos for a list of Mapping Toolbox demos

• maps to see a list of all Mapping Toolbox map projections by class, name,
and ID string

• maplist to return a structure describing all Mapping Toolbox map
projections

• projlist to list map projections supported by projfwd and projinv

Consulting Release Notes
To learn how one version of Mapping Toolbox software differs from the next,
read the Mapping Toolbox Release Notes, which include information on
enhancements, syntax and GUI changes, known software and documentation
problems, and compatibility issues.

1-26

Mapping Toolbox™ Demos and Data

Mapping Toolbox Demos and Data

In this section...

“Available Demos” on page 1-27

“Locating Geospatial Data” on page 1-28

Available Demos
Try out some demos to see Mapping Toolbox functions in action. To see the
code for any of the non-Web demos, open the demo and click Open <demo>.m
in the Editor. This link is located on the left side of the banner at the top
of the page.

Creating Map Displays

• Importing Geographic Data and Creating Map Displays (Web)

• Creating Maps from Geographic (Latitude, Longitude) Data (mapexgeo)

• Creating Maps from Data in a Projected x-y System (mapexmap)

• Creating an Interactive Map for Selecting Point Features (mapexfindcity)

Using Geospatial Analysis Tools and Formats

• Performing a Numerical Simulation of an Oil Spill (Web)

• Converting Coastline Data (GSHHS) to Shapefile Format (mapexgshhs)

• Exporting Vector Point Data to KML (mapexkmlexport)

• Plotting a 3-D Dome as a Mesh Over a Globe (mapex3ddome)

• Un-Projecting a Digital Elevation Model (DEM) (mapexunprojectdem)

Working with Georeferenced Images

• Creating a Half-Resolution Georeferenced Image (mapexrefmat)

• Georeferencing an Image to an Orthotile Base Layer (mapexreg)

1-27

http://www.mathworks.com/products/demos/mappingtlbx/Introduction_to_Mapping_Toolbox/
http://www.mathworks.com/products/demos/mappingtlbx/web_demo_oil_spill/

1 Getting Started

Interacting with Web Map Service (WMS) Servers

• Overlaying Web Map Service (WMS) Weather and Satellite Imagery Layers
to Calculate Storm Area (Web)

• Compositing and Animating Web Map Service (WMS) Meteorological
Layers (mapexwmsanimate)

• Using Web Map Service Data for Visualization and Analysis in Geospatial
Applications (MATLAB Digest article)

To see a list of links to map demos, as well as descriptions of the sample data
provided in Mapping Toolbox, type the following:

help mapdemos

Locating Geospatial Data
Find sample data sets in the Mapping Toolbox mapdemos folder
(toolbox\map\mapdemos). Most of the sample data sets have .txt files that
provide information or metadata about their source and content.

For information on locating digital map data you can download over the
Internet, see the following documentation at the MathWorks Web site.
http://www.mathworks.com/support/tech-notes/2100/2101.html

1-28

http://www.mathworks.com/products/demos/mappingtlbx/Mapping_Toolbox_WMS/
http://www.mathworks.com/products/demos/mappingtlbx/Mapping_Toolbox_WMS/
http://www.mathworks.com/company/newsletters/digest/2010/july/wms-geospatial-applications.html#Animating
http://www.mathworks.com/company/newsletters/digest/2010/july/wms-geospatial-applications.html#Animating
http://www.mathworks.com/support/tech-notes/2100/2101.html

2

Understanding Map Data

• “Maps and Map Data” on page 2-2

• “Types of Map Data Handled by the Toolbox” on page 2-4

• “Understanding Vector Geodata” on page 2-13

• “Understanding Raster Geodata” on page 2-38

• “Reading and Writing Geospatial Data” on page 2-54

2 Understanding Map Data

Maps and Map Data

In this section...

“What Is a Map?” on page 2-2

“What Is Geospatial Data?” on page 2-2

What Is a Map?
Mapping Toolbox software manipulates electronic representations of
geographic data. It lets you import, create, use, and present geographic data
in a variety of forms and to a variety of ends. In the digital network era, it is
easy to think of geospatial data as maps and maps as data, but you should
take care to note the differences between these concepts.

The simplest (although perhaps not the most general) definition of a map is a
representation of geographic data. Most people today generally think of maps
as two-dimensional; to the ancient Egyptians, however, maps first took the
form of lists of place names in the order they would be encountered when
following a given road. Today such a list would be considered as map data
rather than as a map. When most people hear the word “map” they tend
to visualize two-dimensional renditions such as printed road, political, and
topographic maps, but even classroom globes and computer graphic flight
simulation scenes are maps under this definition.

In this toolbox, map data is any variable or set of variables representing a
set of geographic locations, properties of a region, or features on a planet’s
surface, regardless of how large or complex the data is, or how it is formatted.
Such data can be rendered as maps in a variety of ways using the functions
and user interfaces provided.

What Is Geospatial Data?
Geospatial data comes in many forms and formats, and its structure is more
complicated than tabular or even nongeographic geometric data. It is, in fact,
a subset of spatial data, which is simply data that indicates where things are
within a given coordinate system. Mileposts on a highway, an engineering
drawing of an automobile part, and a rendering of a building elevation
all have coordinate systems, and can be represented as spatial data when

2-2

Maps and Map Data

properly quantified (digitized). Such coordinate systems, however, are local
and not explicitly tied or oriented to the Earth’s surface; thus, most digital
representations of mileposts, machine parts, and buildings do not qualify as
geospatial data (also called geodata).

What sets geospatial data apart from other spatial data is that it is absolutely
or relatively positioned on a planet, or georeferenced. That is, it has a
terrestrial coordinate system that can be shared by other geospatial data.
There are many ways to define a terrestrial coordinate system and also to
transform it to any number of local coordinate systems, for example, to create
a map projection. However, most are based on a framework that represents a
planet as a sphere or spheroid that spins on a north-south axis, and which
is girded by an equator (an imaginary plane midway between the poles and
perpendicular to the rotational axis).

Geodata is coded for computer storage and applications in two principal ways:
vector and raster representations. It has been said that “raster is faster but
vector is corrector.” There is truth to this, but the situation is more complex.
The following discussions explore these two representations: how they differ,
what data structures support them, why you would choose one over the other,
and how they can work together in the toolbox. The conclude by summarizing
the functions available for importing and exporting geospatial data formats.

2-3

2 Understanding Map Data

Types of Map Data Handled by the Toolbox

In this section...

“Vector Geodata” on page 2-4

“Raster Geodata” on page 2-7

“Combining Vector and Raster Geodata” on page 2-10

Vector Geodata
Vector data (in the computer graphics sense rather than the physics
sense) can represent a map. Such vectors take the form of sequences of
latitude-longitude or projected coordinate pairs representing a point set, a
linear map feature, or an areal map feature. For example, points delineating
the boundary of the United States, the interstate highway system, the centers
of major U.S. cities, or even all three sets taken together, can be used to make
a map. In such representations, the geographic data is in vector format and
displays of it are referred to as vector maps. Such data consists of lists of
specific coordinate locations (which, if describing linear or areal features, are
normally points of inflection where line direction changes), along with some
indication of whether each is connected to the points adjacent to it in the list.

In the Mapping Toolbox environment, vector data consists of sequentially
ordered pairs of geographic (latitude, longitude) or projected (x,y) coordinate
pairs (also called tuples). Successive pairs are assumed to be connected
in sequence; breaks in connectivity must be delineated by the creation of
separate vector variables or by inserting separators (usually NaNs) into the
sets at each breakpoint. For vector map data, the connectivity (topological
structure) of the data is often only a concern during display, but it also affects
the computation of statistics such as length and area.

A Look at Vector Data

1 To inspect an example of vector map data, enter the following commands:

load coast
whos

Name Size Bytes Class Attributes

2-4

Types of Map Data Handled by the Toolbox

ans 1x45 90 char
lat 9589x1 76712 double
long 9589x1 76712 double

The variables lat and long are vectors in the coast MAT-file, which
together form a vector map of the coastlines of the world.

2 To view a map of this data, enter these commands:

axesm mercator
framem
plotm(lat,long)

Inspect the first 20 coordinates of the coastline vector data:

[lat(1:20) long(1:20)]

2-5

2 Understanding Map Data

ans =
-83.83 -180
-84.33 -178
-84.5 -174
-84.67 -170
-84.92 -166
-85.42 -163
-85.42 -158
-85.58 -152
-85.33 -146
-84.83 -147
-84.5 -151
-84 -153.5
-83.5 -153
-83 -154
-82.5 -154
-82 -154
-81.5 -154.5
-81.17 -153
-81 -150
-80.92 -146.5

Does this give you any clue as to which continent’s coastline these locations
represent?

3 To see the coastline these vector points represent, type this command to
display them in red:

plotm(lat(1:20), long(1:20),'r')

As you may have deduced by looking at the first column of the data, there
is only one continent that lies below -80º latitude, Antarctica.

The above example presents the map in a Mercator projection. A map
projection displays the surface of a sphere (or a spheroid) in a two-dimensional
plane. As the word “plane” indicates, points on the sphere are geometrically
projected to a plane surface. There are many possible ways to project a map,
all of which introduce various types of distortions.

For further information on how Mapping Toolbox software manages map
projections, see Chapter 8, “Using Map Projections and Coordinate Systems”.

2-6

Types of Map Data Handled by the Toolbox

For details on data structures that the toolbox uses to represent vector
geodata, see “Mapping Toolbox Geographic Data Structures” on page 2-21.

Raster Geodata
You can also map data represented as a matrix (a 2-D MATLAB array) in
which each row-and-column element corresponds to a rectangular patch of
a specific geographic area, with implied topological connectivity to adjacent
patches. This is commonly referred to as raster data. Raster is actually a
hardware term meaning a systematic scan of an image that encodes it into a
regular grid of pixel values arrayed in rows and columns.

When data in raster format represents the surface of a planet, it is called a
data grid, and the data is stored as an array or matrix. The toolbox leverages
the power of MATLAB matrix manipulation in handling this type of map data.
This documentation uses the terms raster data and data grid interchangeably
to talk about geodata stored in two-dimensional array form.

A raster can encode either an average value across a cell or a value sampled
(posted) at the center of that cell. While geolocated data grids explicitly
indicate which type of values are present (see “Geolocated Data Grids” on
page 2-46), external metadata/user knowledge is required to be able to specify
whether a regular data grid encodes averages or samples of values.

Digital Elevation Data
When raster geodata consists of surface elevations, the map can also be
referred to as a digital elevation model/matrix (DEM), and its display is a
topographical map. The DEM is one of the most common forms of digital
terrain model (DTM), which can also be represented as contour lines,
triangulated elevation points, quadtrees, octtrees, or otherwise.

The topo global terrain data is an example of a DEM. In this 180-by-360
matrix, each row represents one degree of latitude, and each column
represents one degree of longitude. Each element of this matrix is the average
elevation, in meters, for the one-degree-by-one-degree region of the Earth to
which its row and column correspond.

2-7

2 Understanding Map Data

Remotely Sensed Image Data
Raster geodata also encompasses georeferenced imagery. Like data grids,
images are organized into rows and columns. There are subtle distinctions,
however, which are important in certain contexts. One distinction is that an
image may contain RGB or multispectral channels in a single array, so that
it has a third (color or spectral) dimension. In this case a 3-D array is used
rather than a 2-D (matrix) array. Another distinction is that while data grids
are stored as class double in the toolbox, images may use a range of MATLAB
storage classes, with the most common being uint8, uint16, double, and
logical. Finally, for grayscale and RGB images of class double, the values of
individual array elements are constrained to the interval [0 1].

In terms of georeferencing—converting between column/row subscripts
and 2-D map or geographic coordinates—images and data grids behave the
same way (which is why both are considered to be a form of raster geodata).
However, when performing operations that process the values raster elements
themselves, including most display functions, it is important to be aware of
whether you are working with an image or a data grid, and for images, how
spectral data is encoded.

For further details concerning the structure of raster map data, see
“Understanding Raster Geodata” on page 2-38.

A Look at Raster Data

1 Load the topo data grid.

load topo topo

2 topo contains raster elevation data. Create a referencing object to
georeference topo.

topoR = georasterref('RasterSize', size(topo), ...
'Latlim', [-90 90], 'Lonlim', [0 360]);

3 Create an equal-area map projection to view the topographic data:

axesm sinusoid

2-8

Types of Map Data Handled by the Toolbox

A figure window is created with map axes set to display a sinusoidal
projection.

4 Generate a shaded relief map. You can do this in several ways. First use
geoshow and apply a topographic colormap using demcmap:

geoshow(topo,topoR,'DisplayType','texturemap')
demcmap(topo)

The geoshow function displays geodata in geographic (unprojected)
coordinates. The geoshow output is shown below:

5 Now create a new figure using a Hammer projection (which, like the
sinusoidal, is also equal-area), and display topo using meshlsrm, which
enables control of lighting effects:

figure; axesm hammer
meshlsrm(topo,topoR)

A colored relief map of the topo data set, illuminated from the east, is
rendered in the second figure window.

2-9

2 Understanding Map Data

For additional details on controlling the illumination of maps, see “Shading
and Lighting Terrain Maps” on page 5-21.

Note that the content, symbolization, and the projection of the map are
completely independent. The structure and content of the topo variable are
the same no matter how you display it, although how it is projected and
symbolized can affect its interpretation. The following example illustrates
this.

Combining Vector and Raster Geodata
Vector map variables and data grid variables are often used or displayed
together. For example, continental coastlines in vector form might be
displayed with a grid of temperature data to make the latter more useful.
When several map variables are used together, regardless of type, they can
be referred to as a single map. To do this, of course, the different data sets
must use the same coordinate system (i.e., geographic coordinates on the
same ellipsoid or an identical map projection). See Chapter 3, “Understanding
Geospatial Geometry” for an introduction to these concepts.

Viewing Raster and Vector Data on the Same Map
Using the coast and topo data from the previous examples, you can combine
them in a single map and see how well the two types of data work together:

1 Clear the current map:

clma

2-10

Types of Map Data Handled by the Toolbox

2 Reload the coastline data:

load coast

3 If the topo data is not already in the workspace, load it as well:

load topo

4 Set up a Robinson projection:

axesm robinson

5 Plot the raster topographic data with an appropriate colormap:

topoR = georasterref('RasterSize', size(topo), ...
'Latlim', [-90 90], 'Lonlim', [0 360]);

geoshow(topo,topoR,'DisplayType','texturemap')
demcmap(topo)

6 Plot the coastline data in red on top of the terrain map:

geoshow(lat,long,'Color','r')

Note that you can use geoshow to display both raster and vector data. Here
is the resulting map.

For additional details on how Mapping Toolbox functions handles raster
geodata, see “Understanding Raster Geodata” on page 2-38.

2-11

2 Understanding Map Data

The remainder of this chapter focuses on the fundamental principles of
geographic measurement and data manipulation that are a prerequisite for
creating map displays. “Reading and Writing Geospatial Data” on page 2-54
summarizes input functions for importing many formats of geospatial data
into the toolbox. Chapter 3, “Understanding Geospatial Geometry” introduces
geodetic concepts that underlie all geospatial data and its handling.

2-12

Understanding Vector Geodata

Understanding Vector Geodata

In this section...

“Points, Lines, and Polygons” on page 2-13

“Segments Versus Polygons” on page 2-19

“Mapping Toolbox Geographic Data Structures” on page 2-21

“Selecting Data to Read with the shaperead Function” on page 2-32

Points, Lines, and Polygons
In the context of geodata, vector data means points, lines, and polygons that
represent geographic objects. Vector geospatial data is used to represent point
features, such as cities and landmarks; linear features, such as rivers and
highways; and areal features, such as bodies of water and voting districts.

Displaying a Point
In the MATLAB workspace, vector data is expressed as pairs of variables that
represent the geographic or plane coordinates for a set of points of interest.
For example, a single point, the location of the Eiffel Tower can be mapped
as a vector.

1 Display a map of France.

h = worldmap('France');
landareas = shaperead('landareas.shp','UseGeoCoords', true);
geoshow (landareas, 'FaceColor', [1 1 .5]);

2 Save the location of the Eiffel Tower in vector form.

TowerLat = 48.85;
TowerLon = 2.28;

3 Place a red dot on the map to indicate the tower and label it.

geoshow(TowerLat, TowerLon, 'Marker','.','MarkerEdgeColor','red')
textm(TowerLat,TowerLon + 0.5, 'Eiffel Tower');

2-13

2 Understanding Map Data

Displaying a Line
This simple example demonstrates how to use the function linem to display
vector data for three short lines branching from one common endpoint.

axesm sinusoid; framem;
linem([15; 0; -45; -25],[-100; 0; 70; 110],'r-')
linem([15; -30; -60; -65],[-100; -20; 100; 150],'b-')
linem([15; 20; 40; 20],[-100; -20; 40; 50], 'g-')

Rivers are examples of lines. Enter the following code to add rivers to a map
of France:

2-14

Understanding Vector Geodata

h = worldmap('France');
landareas = shaperead('landareas.shp','UseGeoCoords', true);
geoshow (landareas, 'FaceColor', [1 1 .5]);
rivers = shaperead('worldrivers', 'UseGeoCoords', true);
geoshow(rivers, 'Color', 'blue')

Find out more about the rivers structure array:

rivers

rivers =

128x1 struct array with fields:
Geometry
BoundingBox
Lon
Lat
Name

rivers contains 128 world rivers. Type the following at the command line to
view the structure for the eighth river:

2-15

2 Understanding Map Data

rivers(8)

ans =

Geometry: 'Line'
BoundingBox: [2x2 double]

Lon: [129.6929 128.9659 128.7473 NaN]
Lat: [63.3965 63.4980 63.5220 NaN]

Name: 'Lena'

The rivers are stored as shapes of type 'Line'. Data for the eighth river,
Lena, is stored in Lat and Lon vectors. Note that each vector ends with a NaN.

Displaying a Polygon
Many common map objects, such as state boundaries, islands, and continents,
are polygons. Some polygon objects in the real world can have many parts:
for example, the islands that make up the state of Hawaii. When encoding
as vector variables the shapes of such compound entities, you must separate
successive entities. To indicate that such a discontinuity exists, the toolbox
uses the convention of placing NaNs in identical positions in both vector
variables. A NaN separator serves as a “pen-up” command, a command to
stop drawing one polygon and start drawing another. The example below
demonstrates how NaN separators divide the data for simple polygons.

1 Copy and paste the following vector variables at the command line:

x = [40 55 33 10 0 5 10 40 NaN 10 25 30 25 10...
10 NaN 90 80 65 80 90 NaN];

y = [50 20 0 0 15 25 55 50 NaN 20 10 10 20 30...
20 NaN 10 0 20 25 10 NaN];

These vector variables appear as rows in the following table, along with a
row listing the indices.

2-16

Understanding Vector Geodata

Notice that the NaNs appear in the same locations in both x and y vectors.
Columns 9, 16, and 22 of the table have NaNs. These mark the division
between separate polygons. Also, notice that the x and y data for vertices
1 and 8 are the same. This is the point where segments join together
to close the polygon.

2 Use the mapshow function to display the polygon.

mapshow(x,y,'DisplayType','polygon')

3 In this example, the vector variables contain data that displays as a
compact, multipart polygon with a hole. Compare the data from the table to
the illustration. Note that the vertices in the illustration have been labelled
to correspond to the indices. (Your output will not contain these labels.)

Individual contours in x and y are assumed to be external contours if their
vertices are arranged in clockwise order; otherwise they are assumed to
be internal contours. You can see that the “hole” has vertices that appear
in counter-clockwise order.

2-17

2 Understanding Map Data

Now consider an example of polygons on a map of the United States. Enter
the following code to display a map of the U.S. (excluding Alaska and Hawaii):

figure; ax = usamap('conus');
set(ax, 'Visible', 'off')
states = shaperead('usastatelo', 'UseGeoCoords', true);
names = {states.Name};
indexConus = 1:numel(states);
stateColor = [0.5 1 0.5];
geoshow(ax, states(indexConus), 'FaceColor', stateColor)
setm(ax, 'Frame', 'off', 'Grid', 'off',...

'ParallelLabel', 'off', 'MeridianLabel', 'off')

Examine the structure for one of the states:

states(4)

ans =

Geometry: 'Polygon'
BoundingBox: [2x2 double]

Lon: [1x183 double]
Lat: [1x183 double]

Name: 'Arkansas'
LabelLat: 34.8350
LabelLon: -91.8861

2-18

Understanding Vector Geodata

You can see that Arkansas is of shape type 'Polygon'. View the last entry
in the Lat vector:

states(4).Lat(end)

ans =

NaN

The NaN serves as a separator between polygons.

Compare the first and next-to-last entries:

states(4).Lat(1)
states(4).Lat(182)

ans =

33.0200

ans =

33.0200

The first and next-to-last entries are the same to close the polygon.

Segments Versus Polygons
Geographic objects represented by vector data might or might not be
formatted as polygons. Imagine two variables, latcoast and loncoast, that
correspond to a sequence of points that caricature the coast of the island
of Great Britain. If this data returns to its starting point, then a polygon
describing Great Britain exists. This data might be plotted as a patch or as a
line, and it might be logically employed in calculations as either.

Now suppose you want to represent the Anglo-Scottish border, proceeding
from the west coast at Solway Firth to the east coast at Berwick-upon-Tweed.
This data can only be properly defined as a line, defined by two or more points,
which you can represent with two more variables, latborder and lonborder.
When plotted together, the two pairs of variables can form a map. The patch

2-19

2 Understanding Map Data

of Great Britain plus the line showing the Scottish border might look like two
patches or regions, but there is no object that represents England and no
object that represents Scotland, either in the workspace or on the map axes.

In order to represent both regions properly, the Great Britain polygon needs to
be split at the two points where the border meets it, and a copy of latborder
and lonborder concatenated to both lines (placing one in reverse order). The
resulting two polygons can be represented separately (e.g., in four variables
named latengland, lonengland, latscotland, and lonscotland) or in two
variables that define two polygons each, delineated by NaNs (e.g., latuk,
lonuk).

#���
�����

���!�������$�
���#������ ���!�����������
����
�%
�
&��������
����!���'

The distinction between line and polygon data might not appear to be
important, but it can make a difference when you are performing geographic
analysis and thematic mapping. For example, polygon data can be treated as
line data and displayed with functions such as linem, but line data cannot
be handled as polygons unless it is restructured to make all objects close on
themselves, as described in “Matching Line Segments” on page 7-4.

2-20

Understanding Vector Geodata

Mapping Toolbox Geographic Data Structures
In examples provided in prior chapters, geodata was in the form of individual
variables. Mapping Toolbox software also provides an easy means of
displaying, extracting, and manipulating collections of vector map features
organized in geographic data structures.

A geographic data structure is a MATLAB structure array that has one
element per geographic feature. Each feature is represented by coordinates
and attributes. A geographic data structure that holds geographic coordinates
(latitude and longitude) is called a geostruct, and one that holds map
coordinates (projected x and y) is called a mapstruct. Geographic data
structures hold only vector features and cannot be used to hold raster data
(regular or geolocated data grids or images).

Shapefiles
Geographic data structures most frequently originate when vector geodata
is imported from a shapefile. The Environmental Systems Research
Institute designed the shapefile format for vector geodata. Shapefiles
encode coordinates for points, multipoints, lines, or polygons, along with
non-geometrical attributes.

A shapefile stores attributes and coordinates in separate files; it consists of
a main file, an index file, and an xBASE file. All three files have the same
base name and are distinguished by the extensions .shp, .shx, and .dbf,
respectively. (For example, given the base name 'concord_roads' the
shapefile filenames would be 'concord_roads.shp', 'concord_roads.shx',
and 'concord_roads.dbf').

The Contents of Geographic Data Structures
The shaperead function reads vector features and attributes from a shapefile
and returns a geographic data structure array. The shaperead function
determines the names of the attribute fields at run-time from the shapefile
xBASE table or from optional, user-specified parameters. If a shapefile
attribute name cannot be directly used as a field name, shaperead assigns
the field an appropriately modified name, usually by substituting underscores
for spaces.

2-21

2 Understanding Map Data

Fields in a Geographic Data Structure

Field Name Data Type Description Comments

Geometry String One of the following
shape types: 'Point',
'MultiPoint', 'Line',
or 'Polygon'.

For a 'PolyLine',
the value of the
Geometry field is
simply 'Line'.

BoundingBox 2-by-2
numerical
array

Specifies the minimum
and maximum feature
coordinate values in
each dimension in the
following form:

min() min()
max() max()

X Y
X Y

⎡

⎣
⎢

⎤

⎦
⎥

Omitted for shape
type 'Point'.

X, Y, Lon, or
Lat

1-by-N
array
of class
double

Coordinate vector.

Attr String
or scalar
number

Attribute name, type,
and value.

Optional.
There are
usually multiple
attributes.

The shaperead function does not support any 3-D or “measured” shape
types: 'PointZ', 'PointM', 'MultipointZ', 'MultipointM', 'PolyLineZ',
'PolyLineM', 'PolygonZ', 'PolylineM', or 'Multipatch'. Also, although
'Null Shape' features can be present in a 'Point', 'Multipoint',
'PolyLine', or 'Polygon' shapefile, they are ignored.

2-22

Understanding Vector Geodata

PolyLine and Polygon Shapes. In geographic data structures with
Line or Polygon geometries, individual features can have multiple
parts—disconnected line segments and polygon rings. The parts can include
counterclockwise inner rings that outline “holes.” For an illustration of
this, see “Displaying a Polygon” on page 2-16. Each disconnected part is
separated from the next by a NaN within the X and Y (or Lat and Lon) vectors.
You can use the isShapeMultipart function to determine if a feature has
NaN-separated parts.

Each multipoint or NaN-separated multipart line or polygon entity
constitutes a single feature and thus has one string or scalar double value per
attribute field. It is not possible to assign distinct attributes to the different
parts of such a feature; any string or numeric attribute imported with (or
subsequently added to) the geostruct or mapstruct applies to all the feature’s
parts in combination.

Mapstructs and Geostructs. By default, shaperead returns a mapstruct
containing X and Y fields. This is appropriate if the data set coordinates
are already projected (in a map coordinate system). Otherwise, if the data
set coordinates are unprojected (in a geographic coordinate system), use the
parameter-value pair 'UseGeoCoords',true to make shaperead return a
geostruct having Lon and Lat fields.

Coordinate Types. If you do not know whether a shapefile uses geographic
coordinates or map coordinates, here are some things you can try:

• Ask your data provider.

• Use shapeinfo to obtain the BoundingBox. By looking at the ranges of
coordinates, you may be able to tell what kind of coordinates you have.

• Examine the optional .prj file, if one has been provided. The .prj file is
written in well-known text, a text mark-up language. If your .prj file
contains the term PROJCS, you have map coordinates. If your .prj file
contains the term GEOGCS, but not the term PROJCS, you have geographic
coordinates.

The geoshow function displays geographic features stored in geostructs, and
the mapshow function displays geographic features stored in mapstructs. If
you try to display a mapstruct with geoshow, the function issues a warning

2-23

2 Understanding Map Data

and calls mapshow. If you try to display a geostruct with mapshow, the function
projects the coordinates with a Plate Carree projection and issues a warning.

Examining a Geographic Data Structure
Here is an example of an unfiltered mapstruct returned by shaperead:

S = shaperead('concord_roads.shp')

The output appears as follows:

S =
609x1 struct array with fields:

Geometry
BoundingBox
X
Y
STREETNAME
RT_NUMBER
CLASS
ADMIN_TYPE
LENGTH

The shapefile contains 609 features. In addition to the Geometry,
BoundingBox, and coordinate fields (X and Y), there are five attribute fields:
STREETNAME, RT_NUMBER, CLASS, ADMIN_TYPE, and LENGTH.

Look at the 10th element:

S(10)

The output appears as follows:

ans =
Geometry: 'Line'

BoundingBox: [2x2 double]
X: [1x9 double]
Y: [1x9 double]

STREETNAME: 'WRIGHT FARM'
RT_NUMBER: ''

CLASS: 5

2-24

Understanding Vector Geodata

ADMIN_TYPE: 0
LENGTH: 79.0347

This mapstruct contains 'Line' features. The tenth line has nine vertices.
The first two attributes are string-valued. The second happens to be empty.
The final three attributes are numeric. Across the elements of S, X and Y can
have various lengths, but STREETNAME and RT_NUMBER must always contain
strings, and CLASS, ADMIN_TYPE and LENGTH must always contain scalar
doubles.

In this example, shaperead returns an unfiltered mapstruct. If you want to
filter out some attributes, see “Selecting Data to Read with the shaperead
Function” on page 2-32 for more information.

How to Construct Geographic Data Structures
Functions such as shaperead or gshhs return geostructs when importing
vector geodata. However, you might want to create geostructs or mapstructs
yourself in some circumstances. For example, you might import vector
geodata that is not stored in a shapefile (for example, from a MAT-file, from
an Microsoft® Excel® spreadsheet, or by reading in a delimited text file). You
also might compute vector geodata and attributes by calling various MATLAB
or Mapping Toolbox functions. In both cases, the coordinates and other data
are typically vectors or matrices in the workspace. Packaging variables into a
geostruct or mapstruct can make mapping and exporting them easier, because
geographic data structures provide several advantages over coordinate arrays:

• All associated geodata variables are packaged in one container, a structure
array.

• The structure is self-documenting through its field names.

• You can vary map symbology for points, lines, and polygons according to
their attribute values by constructing a symbolspec for displaying the
geostruct or mapstruct.

• A one-to-one correspondence exists between structure elements and
geographic features, which extends to the children of hggroups constructed
by mapshow and geoshow.

2-25

2 Understanding Map Data

Achieving these benefits is not difficult. Use the following example as a
guide to packaging vector geodata you import or create into geographic data
structures.

Example — Making Point and Line Geostructs. The following example
first creates a point geostruct containing three cities on different continents
and plots it with geoshow. Then it creates a line geostruct containing data
for great circle navigational tracks connecting these cities. Finally, it plots
these lines using a symbolspec.

1 Begin with a small set of point data, approximate latitudes and longitudes
for three cities on three continents:

latparis = 48.87084; lonparis = 2.41306; % Paris coords
latsant = -33.36907; lonsant = -70.82851; % Santiago
latnyc = 40.69746; lonnyc = -73.93008; % New York City

2 Build a point geostruct; it needs to have the following required fields:

• Geometry (in this case 'Point')

• Lat (for points, this is a scalar double)

• Lon (for points, this is a scalar double)

% The first field by convention is Geometry (dimensionality).
% As Geometry is the same for all elements, assign it with deal:
[Cities(1:3).Geometry] = deal('Point');

% Add the latitudes and longitudes to the geostruct:
Cities(1).Lat = latparis; Cities(1).Lon = lonparis;
Cities(2).Lat = latsant; Cities(2).Lon = lonsant;
Cities(3).Lat = latnyc; Cities(3).Lon = lonnyc;

% Add city names as City fields. You can name optional fields
% anything you like other than Geometry, Lat, Lon, X, or Y.
Cities(1).Name = 'Paris';
Cities(2).Name = 'Santiago';
Cities(3).Name = 'New York';
% Inspect your completed geostruct and its first member
Cities

2-26

Understanding Vector Geodata

Cities =
1x3 struct array with fields:

Geometry
Lat
Lon
Name

Cities(1)

ans =
Geometry: 'Point'

Lat: 48.8708
Lon: 2.4131

Name: 'Paris'

3 Display the geostruct on a Mercator projection of the Earth’s land masses
stored in the landareas.shp demo shapefile , setting map limits to exclude
polar regions:

axesm('mercator','grid','on','MapLatLimit',[-75 75]); tightmap;
% Map the geostruct with the continent outlines
geoshow('landareas.shp')

% Map the City locations with filled circular markers
geoshow(Cities,'Marker','o',...

'MarkerFaceColor','c','MarkerEdgeColor','k');

% Display the city names using data in the geostruct field Name.
% Note that you must treat the Name field as a cell array.
textm([Cities(:).Lat],[Cities(:).Lon],...

{Cities(:).Name},'FontWeight','bold');

2-27

2 Understanding Map Data

4 Next, build a Line geostruct to package great circle navigational tracks
between the three cities:

% Call the new geostruct Tracks and give it a line geometry:
[Tracks(1:3).Geometry] = deal('Line');

% Create a text field identifying kind of track each entry is.
% Here they all will be great circles, identified as 'gc'
% (string signifying great circle arc to certain functions)
trackType = 'gc';
[Tracks.Type] = deal(trackType);

% Give each track an identifying name
Tracks(1).Name = 'Paris-Santiago';
[Tracks(1).Lat Tracks(1).Lon] = ...

track2(trackType,latparis,lonparis,latsant,lonsant);

Tracks(2).Name = 'Santiago-New York';
[Tracks(2).Lat Tracks(2).Lon] = ...

track2(trackType,latsant,lonsant,latnyc,lonnyc);

2-28

Understanding Vector Geodata

Tracks(3).Name = 'New York-Paris';
[Tracks(3).Lat Tracks(3).Lon] = ...

track2(trackType,latnyc,lonnyc,latparis,lonparis);

5 Compute lengths of the great circle tracks:

% The distance function computes distance and azimuth between
% given points, in degrees. Store both in the geostruct.
for j = 1:numel(Tracks)

[dist az] = ...
distance(trackType,Tracks(j).Lat(1),...

Tracks(j).Lon(1),...
Tracks(j).Lat(end),...
Tracks(j).Lon(end));

[Tracks(j).Length] = dist;
[Tracks(j).Azimuth] = az;

end
% Inspect the first member of the completed geostruct
Tracks(1)

ans =
Geometry: 'Line'

Type: 'gc'
Name: 'Paris-Santiago'
Lat: [100x1 double]
Lon: [100x1 double]

Length: 104.8274
Azimuth: 235.8143

6 Map the three tracks in the line geostruct:

% On cylindrical projections like Mercator, great circle tracks
% are curved except those that follow the Equator or a meridian.

% Graphically differentiate the tracks by creating a symbolspec;
% key line color to track length, using the 'summer' colormap.
% Symbolspecs make it easy to vary color and linetype by
% attribute values. You can also specify default symbologies.

colorRange = makesymbolspec('Line',...
{'Length',[min([Tracks.Length]) ...

2-29

2 Understanding Map Data

max([Tracks.Length])],...
'Color',winter(3)});

geoshow(Tracks,'SymbolSpec',colorRange);

You can save the geostructs you just created as shapefiles by calling
shapewrite with a filename of your choice, for example:

shapewrite(Cities,'citylocs');
shapewrite(Tracks,'citytracks');

Making Polygon Geostructs. Creating a geostruct or mapstruct for
polygon data is similar to building one for point or line data. However, if your
polygons include multiple, NaN-separated parts, recall that they can have
only one value per attribute, not one value per part. Each attribute you place
in a structure element for such a polygon pertains to all its parts. This means
that if you define a group of islands, for example with a single NaN-separated
list for each coordinate, all attributes for that element describe the islands
as a group, not particular islands. If you want to associate attributes with
a particular island, you must provide a distinct structure element for that
island.

2-30

Understanding Vector Geodata

Be aware that the ordering of polygon vertices matters. When you map
polygon data, the direction in which polygons are traversed has significance
for how they are rendered by functions such as geoshow, mapshow, and
mapview. Proper directionality is particularly important if polygons contain
holes. The Mapping Toolbox convention encodes the coordinates of outer
rings (e.g., continent and island outlines) in clockwise order; counterclockwise
ordering is used for inner rings (e.g., lakes and inland seas). Within the
coordinate array, each ring is separated from the one preceding it by a NaN.

When plotted by mapshow or geoshow, clockwise rings are filled.
Counterclockwise rings are unfilled; any underlying symbology shows through
such holes. To ensure that outer and inner rings are correctly coded according
to the above convention, you can invoke the following functions:

• ispolycw— True if vertices of polygonal contour are clockwise ordered

• poly2cw— Convert polygonal contour to clockwise ordering

• poly2ccw— Convert polygonal contour to counterclockwise ordering

• poly2fv— Convert polygonal region to face-vertex form for use with patch
in order to properly render polygons containing holes

Three of these functions check or change the ordering of vertices that define
a polygon, and the fourth one converts polygons with holes to a completely
different representation.

For more information about working with polygon geostructs, see the
Mapping Toolbox “Converting Coastline Data (GSHHS) to Shapefile Format”
demo mapexgshhs.

Mapping Toolbox Version 1 Display Structures
Prior to Version 2, when geostructs and mapstructs were introduced, a
different data structure was employed when importing geodata from certain
external formats to encapsulate it for map display functions. These display
structures accommodated both raster and vector map data and other kinds
of objects, but lacked the generality of current geostructs and mapstructs
for representing vector features and are being phased out of the toolbox.
However, you can convert display structures that contain vector geodata to
geostruct form using updategeostruct. For more information about Version
1 display structures and their usage, see “Version 1 Display Structures” in the

2-31

2 Understanding Map Data

reference page for displaym. Additional information is located in reference
pages for updategeostruct, extractm, and mlayers.

Selecting Data to Read with the shaperead Function
The shaperead function provides you with a powerful method, called a
selector, to select only the data fields and items you want to import from
shapefiles.

A selector is a cell array with two or more elements. The first element is a
handle to a predicate function (a function with a single output argument of
type logical). Each remaining element is a string indicating the name of
an attribute.

For a given feature, shaperead supplies the values of the attributes listed to
the predicate function to help determine whether to include the feature in its
output. The feature is excluded if the predicate returns false. The converse
is not necessarily true: a feature for which the predicate returns true may be
excluded for other reasons when the selector is used in combination with the
bounding box or record number options.

The following examples are arranged in order of increasing sophistication.
Although they use MATLAB function handles, anonymous functions, and
nested functions, you need not be familiar with these features in order to
master the use of selectors for shaperead.

Example 1: Predicate Function in Separate File

1 Define the predicate function in a separate file. (Prior to Release 14, this
was the only option available.) Create a file named roadfilter.m, with
the following contents:

function result = roadfilter(roadclass,roadlength)
mininumClass = 4;
minimumLength = 200;
result = (roadclass >= mininumClass) && ...

(roadlength >= minimumLength);
end

2 You can then call shaperead like this:

2-32

Understanding Vector Geodata

roadselector = {@roadfilter, 'CLASS', 'LENGTH'}

roadselector =
@roadfilter 'CLASS' 'LENGTH'

s = shaperead('concord_roads', 'Selector', roadselector)

s =
115x1 struct array with fields:

Geometry
BoundingBox
X
Y
STREETNAME
RT_NUMBER
CLASS
ADMIN_TYPE
LENGTH

or, in a slightly more compact fashion, like this:

s = shaperead('concord_roads',...
'Selector', {@roadfilter, 'CLASS', 'LENGTH'})

s =
115x1 struct array with fields:

Geometry
BoundingBox
X
Y
STREETNAME
RT_NUMBER
CLASS
ADMIN_TYPE
LENGTH

Prior to Version 7 of the Mapping Toolbox software, putting the selector in
a file or subfunction of its own was the only way to work with a selector.

2-33

2 Understanding Map Data

Note that if the call to shaperead took place within a function, then
roadfilter could be defined in a subfunction thereof rather than in a
file of its own.

Example 2: Predicate as Function Handle
As a simple variation on the previous example, you could assign a function
handle, roadfilterfcn, and use it in the selector:

roadfilterfcn = @roadfilter
s = shaperead('concord_roads',...

'Selector', {roadfilterfcn, 'CLASS', 'LENGTH'})
roadfilterfcn =
@roadfilter
s =
115x1 struct array with fields:

Geometry
BoundingBox
X
Y
STREETNAME
RT_NUMBER
CLASS
ADMIN_TYPE
LENGTH

Example 3: Predicate as Anonymous Function
Having to define predicate functions in files of their own, or even as
subfunctions, may sometimes be awkward. Anonymous functions allow the
predicate function to be defined right where it is needed. For example:

roadfilterfcn = ...
@(roadclass, roadlength) (roadclass >= 4) && ...
(roadlength >= 200)

roadfilterfcn =
@(roadclass, roadlength) (roadclass >= 4) ...

&& (roadlength >= 200)

s = shaperead('concord_roads','Selector', ...

2-34

Understanding Vector Geodata

{roadfilterfcn, 'CLASS', 'LENGTH'})

s =
115x1 struct array with fields:

Geometry
BoundingBox
X
Y
STREETNAME
RT_NUMBER
CLASS
ADMIN_TYPE
LENGTH

Example 4: Predicate (Anonymous Function) Defined Within
Cell Array
There is actually no need to introduce a function handle variable when
defining the predicate as an anonymous function. Instead, you can place the
whole expression within the selector cell array itself, resulting in somewhat
more compact code. This pattern is used in many examples throughout the
Mapping Toolbox documentation and function help.

s = shaperead('concord_roads', 'Selector', ...
{@(roadclass, roadlength)...
(roadclass >= 4) && (roadlength >= 200),...
'CLASS', 'LENGTH'})

s =
115x1 struct array with fields:

Geometry
BoundingBox
X
Y
STREETNAME
RT_NUMBER
CLASS
ADMIN_TYPE
LENGTH

2-35

2 Understanding Map Data

Example 5: Parameterizing the Selector; Predicate as Nested
Function
In the previous patterns, the predicate involves two hard-coded parameters
(called minimumClass and minimumLength in roadfilter.m), as well as
the roadclass and roadlength input variables. If you use any of these
patterns in a program, you need to decide on minimum cut-off values for
roadclass and roadlength at the time you write the program. But suppose
that you wanted to wait and decide on parameters like minimumClass and
minimumLength at run time?

Fortunately, nested functions provide the additional power that you need
to do this; they allow you utilize workspace variables in as parameters,
rather than requiring that the parameters be hard-coded as constants within
the predicate function. In the following example, the workspace variables
minimumClass and minimumLength could have been assigned through a
variety of computations whose results were unknown until run-time, yet their
values can be made available within the predicate as long as it is defined as a
nested function. In this example the nested function is wrapped in a file called
constructroadselector.m, which returns a complete selector: a handle to
the predicate (named nestedroadfilter) and the two attibute names:

function roadselector = ...
constructroadselector(minimumClass, minimumLength)

roadselector = {@nestedroadfilter, 'CLASS', 'LENGTH'};
function result = nestedroadfilter(roadclass, roadlength)

result = (roadclass >= minimumClass) && ...
(roadlength >= minimumLength);

end
end

The following four lines show how to use constructroadselector:

minimumClass = 4; % Could be run-time dependent
minimumLength = 200; % Could be run-time dependent

roadselector = constructroadselector(...
minimumClass, minimumLength);

s = shaperead('concord_roads', 'Selector', roadselector)

2-36

Understanding Vector Geodata

s =
115x1 struct array with fields:

Geometry
BoundingBox
X
Y
STREETNAME
RT_NUMBER
CLASS
ADMIN_TYPE
LENGTH

2-37

2 Understanding Map Data

Understanding Raster Geodata

In this section...

“Georeferencing Raster Data” on page 2-38

“Regular Data Grids” on page 2-39

“Geolocated Data Grids” on page 2-46

Georeferencing Raster Data
Raster geodata consists of georeferenced data grids and images that in the
MATLAB workspace are stored as matrices or objects. While raster geodata
looks like any other matrix of real numbers, what sets it apart is that it is
georeferenced, either to the globe or to a specified map projection, so that each
pixel of data occupies a known patch of territory on the planet.

Whether a raster geodata set covers the entire planet or not, its placement and
resolution must be specified. This additional information can be supplied in
the form of a referencing object, a referencing matrix, or a referencing vector.

Referencing Objects
A referencing object is an instance of the spatialref.GeoRasterReference
class, for raster data referenced to a geographic latitude-longitude system,
or the spatialref.MapRasterReference class, for raster data referenced
to a planar (projected) map coordinate system. A spatial referencing object
encapsulates the relationship between a geographic or planar coordinate
system and a system of intrinsic coordinates anchored to the columns and
rows of a 2-D spatially referenced raster grid or image. Unlike the older
referencing matrix and vector representations (described below), a referencing
object is self-documenting, providing a rich set of properties to describe
both the intrinsic and extrinsic geometry. The use of referencing objects is
preferred, but referencing matrices and vectors continue to be supported for
the purpose of compatibility.

Referencing Matrices
A referencing matrix is a 3-by-2 matrix of doubles that describes the scaling,
orientation, and placement of the data grid on the globe. For a given

2-38

Understanding Raster Geodata

referencing matrix, R, one of the following relations holds between rows and
columns and coordinates (depending on whether the grid is based on map
coordinates or geographic coordinates, respectively):

[x y] = [row col 1] * R, or
[long lat] = [row col 1] * R

For additional details about and examples of using referencing matrices, see
the reference page for makerefmat.

Referencing Vectors
In many instances (when the data grid or image is based on latitude and
longitude and is aligned with the geographic graticule), a referencing matrix
has more degrees of freedom than the data requires. In such cases, you may
encounter a more compact representation, a three-element referencing vector.
A referencing vector defines the pixel size and northwest origin for a regular,
rectangular data grid:

refvec = [cells-per-degree north-lat west-lon]

In MAT-files, this variable is often called refvec (or maplegend). The first
element, cells-per-degree, describes the angular extent of each grid cell (e.g., if
each cell covers five degrees of latitude and longitude, cells-per-degree would
be specified as 0.2). Note that if the latitude extent of cells differs from their
longitude extent you cannot use a referencing vector, and instead must specify
a referencing object or matrix. The second element, north-lat, specifies the
northern limit of the data grid (as a latitude), and the third element, west-lon,
specifies the western extent of the data grid (as a longitude). In other words,
north-lat, west-lon is the northwest corner of the data grid. Note, however,
that cell (1,1) is always in the southwest corner of the grid. This need not be
the case for grids or images described by referencing objects or matrices.

All regular data grids require a referencing object, matrix, or vector, even if
they cover the entire planet. Geolocated data grids do not, as they explicitly
identify the geographic coordinates of all rows and columns. For details on
geolocated grids, see “Geolocated Data Grids” on page 2-46.

Regular Data Grids
Regular data grids are rectangular, non-sparse, matrices of class double.

2-39

2 Understanding Map Data

Constructing a Global Data Grid
Imagine an extremely coarse map of the world in which each cell represents
60º. Such a map matrix would be 3-by-6.

1 Create a 3-by-6 grid:

miniZ = [1 2 3 4 5 6; 7 8 9 10 11 12; 13 14 15 16 17 18];

2 Now make a referencing object:

miniR = georasterref('RasterSize', size(miniZ), ...
'Latlim', [-90 90], 'Lonlim', [-180 180])

Your output appears like this:

miniR =

spatialref.GeoRasterReference
Package: spatialref

Properties:
Latlim: [-90 90]
Lonlim: [-180 180]

RasterSize: [3 6]
RasterInterpretation: 'cells'

AngleUnits: 'degrees'
ColumnsStartFrom: 'south'

RowsStartFrom: 'west'
DeltaLat: 60
DeltaLon: 60

RasterExtentInLatitude: 180
RasterExtentInLongitude: 360

XLimIntrinsic: [0.5000 6.5000]
YLimIntrinsic: [0.5000 3.5000]

CoordinateSystemType: 'geographic'

3 Set up an equidistant cylindrical map projection:

figure('Color','white')
ax = axesm('MapProjection', 'eqdcylin');
axis off

2-40

Understanding Raster Geodata

setm(ax,'GLineStyle','-', 'Grid','on','Frame','on')

4 Draw a graticule with parallel and meridian labels at 60º intervals:

setm(ax, 'MlabelLocation', 60, 'PlabelLocation',[-30 30],...
'MLabelParallel','north', 'MeridianLabel','on',...
'ParallelLabel','on','MlineLocation',60,...
'PlineLocation',[-30 30])

5 Map the data using geoshow and display with a color ramp and legend:

geoshow(miniZ, miniR, 'DisplayType', 'texturemap');
colormap('autumn')
colorbar

Note that the first row of the matrix is displayed at the bottom of the map,
while the last row is displayed at the top.

Computing Map Limits for Regular Data Grids
The latitude and longitude limits of a regular grid are among the most
important properties of its referencing object. Given an older data

2-41

2 Understanding Map Data

grid that includes a referencing vector but not a referencing object, a
good way to check the limits is to convert the referencing vector to a
spatialref.GeoRasterReferencing object, as in the following simple
exercise:

1 Load the Korea 5-arc-minute elevation grid and inspect the referencing
vector, refvec:

korea = load('korea','map','refvec')

Your output appears like this:

korea =

map: [180x240 double]
refvec: [12 45 115]

The referencing vector, korea.refvec, indicates that there are 12 cells
per angular degree. This horizontal resolution is 5 times finer than that
of the topo grid, which is one cell per degree. It also indicates that the
northwest corner is at 45 degrees North, 115 degrees East, but it needs to
be combined with the size of the data grid before the southern and eastern
limits can be determined.

2 Convert the referencing vector to a spatialref.GeoRasterReferencing
object (providing a size vector):

korea.R = refvecToGeoRasterReference(korea.refvec, ...
size(korea.map))

Your output appears like this:

korea =

map: [180x240 double]
refvec: [12 45 115]

R: [1x1 spatialref.GeoRasterReference]

3 Examine the Latlim and Lonlim properties:

korea.R.Latlim

2-42

Understanding Raster Geodata

korea.R.Lonlim

ans =

30 45

ans =

115 135

Geographic Interpretation of Grid Cells
You can access and manipulate gridded geodata using either geographic or
intrinsic raster coordinates. Use the russia.mat file to explore this. As was
demonstrated above, the north, south, east, and west limits of the mapped
area can be determined as follows:

russia = load('russia','map','refvec');
R = refvecToGeoRasterReference(russia.refvec, size(russia.map));
R.Latlim
R.Lonlim

Your output appears like this:

ans =

35 80

ans =

15 190

Display a map of Russia:

figure('Color','white')
worldmap(R.Latlim,R.Lonlim)
cmap = jet(4);
geoshow(map,cmap,R)

2-43

2 Understanding Map Data

The spatialref.GeoRasterReferencing.intrinsicToGeographic can be
used to retrieve the geographic coordinates at the center of a given grid
cell. For example, consider the cell in row 23, column 79. In intrinsic raster
coordinates, the center of this cell is located at:

xIntrinsic = 79;
yIntrinsic = 23;

This corresponds to the following location in latitude-longitude, obtained via
the intrinsicToGeographic method:

[lat, lon] = intrinsicToGeographic(R, xIntrinsic, yIntrinsic)

Your output appears like this:

lat =

39.5000

lon =

30.7000

2-44

Understanding Raster Geodata

The geographicToIntrinsic method does the reverse, converting from
latitude-longitude to intrinsic x and y:

[xIntrinsic, yIntrinsic] = geographicToIntrinsic(R, lat, lon)

Your output appears as follows:

xIntrinsic =

79

yIntrinsic =

23

Precomputing the Size of a Data Grid
Finally, if you know the latitude and longitude limits of a region, you can
calculate the required matrix size and an appropriate referencing object
for any desired map resolution and scale. However, before making a large,
memory-taxing data grid, you should first determine what its size will be. For
a map of the continental U.S. at a scale of 10 cells per degree, do the following:

1 Specify latitude limits of 25ºN to 50ºN and longitudes from 60ºW to 130ºW:

latlim = [25 50];
lonlim = [-130 -60];

2 Specify 10 cells per degree, and compute the number of rows and columns
that this cell density implies:

cellsPerDegree = 10;
numRows = cellsPerDegree * diff(latlim);
numCols = cellsPerDegree * diff(lonlim);

3

Construct a referencing object and verify that its size is a reasonable 250
by 700 cells:

2-45

2 Understanding Map Data

R = georasterref('RasterSize',[numRows numCols], ...
'Latlim', latlim, 'Lonlim', lonlim);

R.RasterSize

Your output appears like this:

ans =

250 700

Geolocated Data Grids
In addition to regular data grids, the toolbox provides another format for
geodata: geolocated data grids. These multivariate data sets can be displayed,
and their values and coordinates can be queried, but unfortunately much of
the functionality supporting regular data grids is not available for geolocated
data grids.

The examples thus far have shown maps that covered simple, regular
quadrangles, that is, geographically rectangular and aligned with parallels
and meridians. Geolocated data grids, in addition to these rectangular
orientations, can have other shapes as well.

Geolocated Grid Format
To define a geolocated data grid, you must define three variables:

• A matrix of indices or values associated with the mapped region

• A matrix giving cell-by-cell latitude coordinates

• A matrix giving cell-by-cell longitude coordinates

The following exercise demonstrates this data representation:

1 Load the MAT-file example of an irregularly shaped geolocated data grid
called mapmtx:

load mapmtx
whos

Name Size Bytes Class Attributes

2-46

Understanding Raster Geodata

description 1x54 108 char
lg1 50x50 20000 double
lg2 50x50 20000 double
lt1 50x50 20000 double
lt2 50x50 20000 double
map1 50x50 20000 double
map2 50x50 20000 double
source 1x43 86 char

Two geolocated data grids are in this data set, each requiring three
variables. The values contained in map1 correspond to the latitude and
longitude coordinates, respectively, in lt1 and lg1. Notice that all three
matrices are the same size. Similarly, map2, lt2, and lg2 together form a
second geolocated data grid. These data sets were extracted from the topo
data grid shown in previous examples. Neither of these maps is regular,
because their columns do not run north to south.

2 To see their geography, display the grids one after another:

close all
axesm mercator
gridm on
framem on
h1=surfm(lt1,lg1,map1);
h2=surfm(lt2,lg2,map2);

3 Showing coastlines will help to orient you to these skewed grids:

load coast
plotm(lat,long,'r')

2-47

2 Understanding Map Data

Notice that neither topo matrix is a regular rectangle. One looks like
a diamond geographically, the other like a trapezoid. The trapezoid is
displayed in two pieces because it crosses the edge of the map. These
shapes can be thought of as the geographic organization of the data, just as
rectangles are for regular data grids. But, just as for regular data grids,
this organizational logic does not mean that displays of these maps are
necessarily a specific shape.

4 Now change the view to a polyconic projection with an origin at 0ºN, 90ºE:

setm(gca,'MapProjection','polycon', 'Origin',[0 90 0])

2-48

Understanding Raster Geodata

As the polyconic projection is limited to a 150º range in longitude, those
portions of the maps outside this region are automatically trimmed.

Geographic Interpretations of Geolocated Grids
Mapping Toolbox software supports three different interpretations of
geolocated data grids:

• First, a map matrix having the same number of rows and columns as the
latitude and longitude coordinate matrices represents the values of the
map data at the corresponding geographic points (centers of data cells).

• Next, a map matrix having one fewer row and one fewer column than the
geographic coordinate matrices represents the values of the map data
within the area formed by the four adjacent latitudes and longitudes.

2-49

2 Understanding Map Data

• Finally, if the latitude and longitude matrices have smaller dimensions
than the map matrix, you can interpret them as describing a coarser
graticule, or mesh of latitude and longitude cells, into which the blocks of
map data are warped.

This section discusses the first two interpretations of geolocated data grids.
For more information on the use of graticules, see “The Map Grid” on page
4-55.

Type 1: Values associated with upper left grid coordinate. As an
example of the first interpretation, consider a 4-by-4 map matrix whose cell
size is 30-by-30 degrees, along with its corresponding 4-by-4 latitude and
longitude matrices:

map = [1 2 3 4;...
5 6 7 8;...
9 10 11 12;...
3 14 15 16];

lat = [30 30 30 30;...
0 0 0 0;...
-30 -30 -30 -30;...
-60 -60 -60 -60];

long = [0 30 60 90;...
0 30 60 90;...
0 30 60 90;...
0 30 60 90];

This geolocated data grid is displayed with the values of map shown at the
associated latitudes and longitudes.

2-50

Understanding Raster Geodata

Notice that only 9 of the 16 total cells are displayed. The value displayed for
each cell is the value at the upper left corner of that cell, whose coordinates
are given by the corresponding lat and long elements. By convention, the
last row and column of the map matrix are not displayed, although they exist
in the CData property of the surface object.

Type 2: Values centered within four adjacent coordinates. For the
second interpretation, consider a 3-by-3 map matrix with the same lat and
long variables:

map = [1 2 3;...
4 5 6;...
7 8 9];

Here is a surface plot of the map matrix, with the values of map shown at the
center of the associated cells:

2-51

2 Understanding Map Data

All the map data is displayed for this geolocated data grid. The value of each
cell is the value at the center of the cell, and the latitudes and longitudes in
the coordinate matrices are the boundaries for the cells.

Ordering of Cells. You may have noticed that the first row of the matrix is
displayed as the top of the map, whereas for a regular data grid, the opposite
was true: the first row corresponded to the bottom of the map. This difference
is entirely due to how the lat and long matrices are ordered. In a geolocated
data grid, the order of values in the two coordinate matrices determines the
arrangement of the displayed values.

Transforming Regular to Geolocated Grids. When required, a regular
data grid can be transformed into a geolocated data grid. This simply requires
that a pair of coordinates matrices be computed at the desired spatial
resolution from the regular grid. Do this with the meshgrat function, as
follows:

load topo
[lat,lon] = meshgrat(topo,topolegend);

Name Size Bytes Class Attributes

lat 180x360 518400 double
lon 180x360 518400 double
topo 180x360 518400 double
topolegend 1x3 24 double
topomap1 64x3 1536 double
topomap2 128x3 3072 double

2-52

Understanding Raster Geodata

Transforming Geolocated to Regular Grids. Conversely, a regular data
grid can also be constructed from a geolocated data grid. The coordinates
and values can be embedded in a new regular data grid. The function that
performs this conversion is geoloc2grid; it takes a geolocated data grid and
a cell size as inputs.

2-53

2 Understanding Map Data

Reading and Writing Geospatial Data

In this section...

“Functions that Read and Write Geospatial Data” on page 2-54

“Exporting Vector Geodata” on page 2-59

“Functions That Read and Write Files in Compressed Formats” on page 2-69

Functions that Read and Write Geospatial Data
Many vector and raster data formats have been developed for storing
geospatial data in computer files. Some formats are widely used, others are
obscure; some are simple, while others are elaborate. Some formats are
government or international standards, others are simply popular. A format
can be general-purpose, specific to a narrow class of data, or may be used just
to publish a certain data set.

Using Mapping Toolbox functions, you can read geodata files in generic
exchange formats (e.g., SDTS, shapefiles, and GeoTIFF files) that a variety
of mapping and image processing applications can also read and write. You
can also read files that are in special formats designed to exchange specific
sets of geodata (e.g., AVHRR, GSHHS, DCW, DEM, and DTED files). You can
order, and in some cases download, such data over the Internet from public
agencies and private distributors.

In addition, the toolbox provides generalized sample data in the form of data
files for the entire Earth and its major regions, as well as some more detailed
demo geodata files covering small areas. These data sets, which are located in
matlabroot/toolbox/map/mapdemos, are used in most of the code examples
provided in this documentation. Many of the sample data sets are described
in text files also located in that folder.

If you need to locate geospatial data in particular formats, or
for specific themes or regions, you can consult the following
MathWorks Tech Note 2101, which is regularly updated.
http://www.mathworks.com/support/tech-notes/2100/2101.html

The following table lists Mapping Toolbox functions that read geospatial
data products and file formats and write geospatial data files. Note that the

2-54

http://www.mathworks.com/support/tech-notes/2100/2101.html

Reading and Writing Geospatial Data

geoshow and mapshow functions and the mapview GUI can read and display
both vector and raster geodata files in several formats. Click function names
to see their details in the Mapping Toolbox reference documentation. The
Type of Coordinates column describes whether the function returns or
writes data in geographic (“geo”) or projected (“map”) coordinates, or as
geolocated data grids (which, for the functions listed, all contain geographic
coordinates). Some functions can return either geographic or map coordinates,
depending on what the file being read contains; these functions do not signify
what type of coordinates they return (in the case of shaperead, however,
you can specify whether the structure it returns should have X and Y or Lon
and Lat fields).

Function Description Type of Data Type of
Coordinates

arcgridread Read a gridded data set in Arc ASCII
Grid Format

raster map

avhrrgoode Read data products derived from
the Advanced Very High Resolution
Radiometer (AVHRR) and stored in
the Goode Homosoline projection:
Global Land Cover Classification
(GLCC) or Normalized Difference
Vegetation Index (NDVI)

raster geolocated

avhrrlambert Read AVHRR GLCC and NDVI
data products stored in the Lambert
Conformal Conic projection

raster geolocated

dcwdata Read selected data from the Digital
Chart of the World (DCW)

vector geo

dcwgaz Search for entries in the DCW gazette vector geo

dcwread Read a DCW file vector geo

dcwrhead Read a DCW file header properties geo

demdataui GUI for interactively selecting data
from various Digital Elevation Models
(DEMs)

raster geo

2-55

2 Understanding Map Data

Function Description Type of Data Type of
Coordinates

dted Read U. S. Dept. of Defense Digital
Terrain Elevation Data (DTED)

raster geo

dteds List DTED data grid filenames
for a specified latitude-longitude
quadrangle

filenames geo

egm96geoid Read 15-minute gridded geoid heights
from the EGM96 geoid model

raster geo

etopo Read data from ETOPO1c
(1-minute), ETOPO2v2c (2-minute),
ETOPO2–2001 (2-minute), or
ETOPO5 (5-minute) gridded global
terrain relief data sets

raster geo

fipsname Read Federal Image Processing
Standards (FIPS) names for
Topographically Integrated
Geographic Encoding and Referencing
(TIGER) thinned boundary files

FIPS
names and
identifiers

geo

geotiffinfo Information about GeoTIFF file properties map

geo

geotiffread Read GeoTIFF file raster map

geo

geotiffwrite Write GeoTIFF file raster map

geo

getworldfilename Derive a worldfile name from an
image filename

filename geo

map

globedem Read Global Land One-km Base
Elevation (GLOBE) 30-arc-second (1
km) Digital Elevation Model

raster geo

2-56

Reading and Writing Geospatial Data

Function Description Type of Data Type of
Coordinates

globedems List GLOBE data filenames for
a specified latitude-longitude
quadrangle

filenames geo

gshhs Read Global Self-Consistent
Hierarchical High-Resolution
Shoreline (GSHHS) data

vector geo

gtopo30 Read GTOPO30 30-arc-second (1 km)
global elevation data

raster geo

gtopo30s List GTOPO30 data filenames
for a specified latitude-longitude
quadrangle

filenames geo

kmlwrite Write vector coordinates and
attributes to a file in KML format

vector
points and
attributes

geo

readfk5 Read data from the Fifth
Fundamental Catalog of Stars

vector astro

satbath Read 2-minute (4 km) global
topography sea floor derived by Smith
and Sandwell from ship soundings
and satellite bathymetry

raster geolocated

sdtsdemread Read U.S. Geological Survey (USGS)
digital elevation model (DEM) stored
in SDTS (Spatial Data Transfer
Standard) format (Raster Profile)

raster geo

map

sdtsinfo Information about SDTS data set properties geo

shapeinfo Information about the geometry and
attributes of geographic features
stored in a shapefile (a set of “.shp”,
“.shx” and “.dbf” files)

properties geo

map

2-57

2 Understanding Map Data

Function Description Type of Data Type of
Coordinates

shaperead Read geographic feature coordinates
and associated attributes from a
shapefile

vector geo

map

shapewrite Write geospatial data and associated
attributes in shapefile format

vector geo

map

tbase Read data from the 5-minute
TerrainBase global digital terrain
model

raster geo

usgs24kdem Read USGS 1:24,000 (30 m or 10 m)
digital elevation models

raster geolocated

usgsdem Read USGS 1:250,000 (100 m) digital
elevation models

raster map

usgsdems List USGS digital elevation model
(DEM) filenames covering a specified
latitude-longitude quadrangle

filenames map

vmap0data Extract selected data from the Vector
Map Level 0 (VMAP0) CD-ROMs

vector geo

vmap0read Read a VMAP0 file vector geo

vmap0rhead Read VMAP0 file headers properties geo

vmap0ui Activate GUI for interactively
selecting VMAP0 data

vector geo

worldfileread Read a worldfile and return a
referencing matrix

georeferencing
information

geo

worldfilewrite Export a referencing matrix into an
equivalent worldfile

georeferencing
information

geo

The MATLAB environment provides many general file reading and writing
functions (for example, imread, imwrite, urlread, and urlwrite) which you
can use to access geospatial data you want to use with Mapping Toolbox
software. For example, you can read a TIFF image with imread and its
accompanying worldfile with worldfileread to import the image and

2-58

Reading and Writing Geospatial Data

construct a referencing matrix to georeference it. See the Mapping Toolbox
demos “Creating a Half-Resolution Georeferenced Image” and “Georeferencing
an Image to an Orthotile Base Layer” for examples of how you can do this.

Exporting Vector Geodata
When you want to share geodata you are working with, Mapping Toolbox
functions can export it two principal formats, shapefiles and KML files.
Shapefiles are binary files that can contain point, line, vector, and polygon
data plus attributes. Shapefiles are widely used to exchange data between
different geographic information systems. KML files are text files that can
contain the same type of data, and are used mainly to upload geodata the Web.
The toolbox functions shapewrite and kmlwrite export to these formats.

To format attributes, shapewrite uses an auxiliary structure called a DBF
spec, which you can generate with the makedbfspec function. Similarly,
you can provide attributes to kmlwrite to format as a table by providing
an attribute spec, a structure you can generate using the makeattribspec
function or create manually.

For examples of and additional information about reading and writing
shapefiles and DBF specs, see the documentation for shapeinfo, shaperead,
shapewrite, and makedbfspec. The example provided in “How to Construct
Geographic Data Structures” on page 2-25 also demonstrates exporting vector
data using shapewrite. For information about creating KML files, see the
following section.

Exporting KML Files for Viewing in Earth Browsers
Keyhole Markup Language (KML) is an XML dialect for formatting 2-D and
3-D geodata for display in “Earth browsers,” such as Google™ Earth mapping
service, Google Maps mapping service, Google Mobile wireless service,
and NASA WorldWind. Other Web browser applications, such as Yahoo!®

Pipes, also support KML either by rendering or generating files. A KML
file specifies a set of features (placemarks, images, polygons, 3-D models,
textual descriptions, etc.) and how they are to be displayed in browsers and
applications.

Each place must at least have an address or a longitude and a latitude. Places
can also have textual descriptions, including hyperlinks. KML files can also

2-59

2 Understanding Map Data

specify display styles for markers, lines and polygons, and “camera view”
parameters such as tilt, heading, and altitude. You can generate placemarks
in KML files for individual points and sets of points that include attributes
in table form. You can include HTML markups in these tables, with or
without hyperlinks, but you cannot currently control the camera view of a
placemark. (However, the users of an Earth browser can generally control
their views of it).

Generating a Single Placemark. Here is a placemark produced by
kmlwrite that locates the headquarters of MathWorks, as displayed in the
Google Earth application.

The location, text, and icon for the placemark were specified to kmlwrite as
follows:

lat = 42.299827;

lon = -71.350273;

description = sprintf('%s
%s
%s', ...

'3 Apple Hill Drive', 'Natick, MA. 01760', ...

2-60

Reading and Writing Geospatial Data

'http://www.mathworks.com');

name = 'The MathWorks, Inc.';

iconFilename = ...

'http://www.mathworks.com/products/product_listing/images/ml_icon.gif';

iconScale = 1.0;

filename = 'MathWorks.kml';

kmlwrite(filename, lat, lon, ...

'Description', description, 'Name', name, ...

'Icon', iconFilename, 'IconScale', iconScale);

The file produced by kmlwrite looks like this:

<?xml version="1.0" encoding="utf-8"?>

<kml xmlns="http://www.opengis.net/kml/2.2">

<Document>

<name>MathWorks</name>

<Placemark>

<Snippet maxLines="0"> </Snippet>

<description>3 Apple Hill Drive&lt;br>Natick, MA. 01760&lt;/b>

&lt;br>http://www.mathworks.com&lt;/b>

</description>

<name>The MathWorks, Inc.</name>

<Style>

<IconStyle>

<Icon>

<href>

http://www.mathworks.com/products/product_listing/images/ml_icon.gif

</href>

</Icon>

<scale>1</scale>

</IconStyle>

</Style>

<Point>

<coordinates>-71.350273,42.299827,0.0</coordinates>

</Point>

</Placemark>

</Document>

</kml>

2-61

2 Understanding Map Data

If you view this in an Earth Browser, notice that the text inside the
placemark, “http://www.mathworks.com,” was automatically rendered as a
hyperlink. The Google Earth service also adds a link called “Directions”.
kmlwrite does not include location coordinates in placemarks. This is because
it is easy for users to read out where a placemark is by mousing over it or
by viewing its Properties dialog box.

Placemarks from Addresses. You do not need coordinates in order to
geolocate placemarks; instead, you can specify street addresses or more
general addresses such as postal codes, city, state, or country names in a
KML file. (Note that the Google Maps service does not support address-based
placemarks.) If the viewing application is capable of looking up addresses,
such placemarks can be displayed in appropriate, although possibly imprecise,
locations. When you use addresses, kmlwrite creates an <address> element
for each placemark rather than <point> elements containing <coordinates>
elements. For example, here is code for kmlwrite that generates
address-based placemarks for three cities in Australia from a cell array:

address = {'Perth, Australia', ...
'Melbourne, Australia', ...
'Sydney, Australia'};

filename = 'Australian_Cities.kml';
kmlwrite(filename, address, 'Name', address);

The generated KML file has the following structure and content:

<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">

<Document>
<name>Australian_Cities</name>
<Placemark>

<Snippet maxLines="0"> </Snippet>
<description> </description>
<name>Perth, Australia</name>
<address>Perth, Australia</address>

</Placemark>
<Placemark>

<Snippet maxLines="0"> </Snippet>
<description> </description>
<name>Melbourne, Australia</name>

2-62

Reading and Writing Geospatial Data

<address>Melbourne, Australia</address>
</Placemark>
<Placemark>

<Snippet maxLines="0"> </Snippet>
<description> </description>
<name>Sydney, Australia</name>
<address>Sydney, Australia</address>

</Placemark>
</Document>

</kml>

The placemarks display in a Google Earth map like this, with default
placemark icons.

2-63

2 Understanding Map Data

Exporting Point Geostructs to Placemarks. This example shows how to
selectively read data from shapefiles and generate a KML file that identifies
all or selected attributes, which you can then view in an earth browser such
as Google Earth. It also shows how to customize placemark icons and vary
them according to attribute values.

The Mapping Toolbox tsunamis demo shapefiles contain a database of 162
tsunami (tidal wave) events reported between 1950 and 2006, described as
point locations with 21 variables (including 18 attributes). You can type out
the metadata file tsunamis.txt to see the definitions of all the data fields.
The steps below select some of these from the shapefiles and display them as
tables in exported KML placemarks.

1 Read the tsunami shapefiles, selecting certain attributes.

There are several ways to select attributes from shapefiles. One is to pass
shaperead a cell array of attribute names in the Attributes parameter.
For example, you might just want to map the maximum wave height, the
suspected cause, and also show the year, location and country for each
event. Set up a cell array with the corresponding attribute field names as
follows, remembering that field names are case-sensitive.

attrs = {'Max_Height','Cause','Year','Location','Country'};

Since the data file uses latitude and longitude coordinates, you need
to specify 'UseGeoCoords',true to ensure that shaperead returns a
geostruct (having Lat and Lon fields).

tsunamis = shaperead('tsunamis.shp','useGeoCoords',true,...
'Attributes',attrs);

Look at the first record in the tsunamis geostruct returned by shaperead.

tsunamis(1)

Geometry: 'Point'
Lon: 128.3000
Lat: -3.8000

Max_Height: 2.8000
Cause: 'Earthquake'
Year: 1950

2-64

Reading and Writing Geospatial Data

Location: 'JAVA TRENCH, INDONESIA'
Country: 'INDONESIA'

2 Output the tsunami data to a KML file with kmlwrite

By default, kmlwrite outputs all attribute data in a geostruct to a KML
formatted file as an HTML table containing unstyled text. When you view
it, the Google Earth program supplies a default marker.

kmlfilename = 'tsunami1.kml';
kmlwrite(kmlfilename,tsunamis);

3 View the placemarks in an earth browser

On Windows®, use winopen to open Google Earth (which must be installed)
to view the KML file.

winopen(kmlfilename)

On Macintosh® or Linux® platforms, use the system command to launch
Google Earth.

cmd = 'googleearth ';
fullfilename = fullfile(pwd, kmlfilename);
system([cmd fullfilename])

Rotate to the Western Pacific ocean and zoom to inspect the placemarks.
Click on the pushpin icons to see the attribute table for any event.
kmlwrite formats tables by default to display all the attributes in the
geostruct passed to it.

2-65

2 Understanding Map Data

4 Customize the placemark contents

To customize the HTML table in the placemark, use the makeattribspec
function. Create an attribute spec for the tsunamis geostruct and inspect it.

attribspec = makeattribspec(tsunamis)

attribspec =
Max_Height: [1x1 struct]

Cause: [1x1 struct]
Year: [1x1 struct]

Location: [1x1 struct]
Country: [1x1 struct]

2-66

Reading and Writing Geospatial Data

Format the label for Max_Height as bold text, give units information about
Max_Height, and also set the other attribute labels in bold.

attribspec.Max_Height.AttributeLabel = 'Maximum Height';
attribspec.Max_Height.Format = '%.1f Meters';
attribspec.Cause.AttributeLabel = 'Cause';
attribspec.Year.AttributeLabel = 'Year';
attribspec.Year.Format = '%.0f';
attribspec.Location.AttributeLabel = 'Location';
attribspec.Country.AttributeLabel = 'Country';

When you use the attribute spec, all the attributes it lists are included in
the placemarks generated by kmlwrite unless you remove them from the
spec manually (e.g., with rmfield).

5 Customize the placemark icon

You can specify your own icon using kmlwrite to use instead of the default
pushpin symbol. The black-and-white bullseye icon used here is specified
as URL for an icon in the Google KML library.

iconname = ...
'http://maps.google.com/mapfiles/kml/shapes/placemark_circle.png';

kmlwrite(kmlfilename,tsunamis,'Description',attribspec,...
'Name',{tsunamis.Location},'Icon',iconname,'IconScale',2);

Refresh the earth browser to display the new version of the KML file.

2-67

2 Understanding Map Data

6 Vary placemark size by tsunami height

To vary the size of placemark icons, specify an icon file and a scaling factor
for every observation as vectors of names (all the same) and scale factors
(all computed individually) when writing a KML file. Scale the width and
height of the markers to the log of Max_Height. Scaling factors for point
icons are data-dependent and can take some experimenting with to get
right.

% Create vector with log2 exponents of |Max_Height| values
[loghgtx loghgte] = log2([tsunamis.Max_Height]);
% Create a vector replicating the icon URL
iconnames = cellstr(repmat(iconname,numel(tsunamis),1));

2-68

Reading and Writing Geospatial Data

kmlwrite(kmlfilename,tsunamis,'Description',attribspec,...
'Name',{tsunamis.Location},'Icon',iconname,...
'IconScale',loghgte);

Refresh the earth browser to display the new version of the KML file.
Position the viewpoint to compare with the previous view of the Pacific
region. Diameters of placemarks now correspond to log(Max_Height).

Functions That Read and Write Files in Compressed
Formats
Geospatial data, like other files, are frequently stored and transmitted in
compressed or archive formats, such a tar, zip, or GNU zip. Several MATLAB

2-69

2 Understanding Map Data

functions read or write such files. All create files in a folder for which you
must have write permission. Input files can exist on your host computer,
reside on a local area network, or be located on the Internet (in which case
they are identified using URLs).

The following table identifies MATLAB functions that you can use to read,
uncompress, compress, and write archived data files, geospatial or otherwise.
Click any link to read the function’s documentation.

Function Purpose

gunzip Uncompress files in the GNU zip format

untar Extract the contents of a tar file

unzip Extract the contents of a zip file

gzip Compress files into the GNU zip format

tar Compress files into a tar file

zip Compress files into a zip file

Use the functions gunzip, untar, and unzip to read data files specified with a
URL or with path syntax. Use the functions gzip, tar, and zip to create your
own compressed files and archives. This capability is useful, for example,
for packaging a set of shapefiles, or a worldfile along with the data grid or
image it describes, for distribution.

2-70

3

Understanding Geospatial
Geometry

• “Understanding Spherical Coordinates” on page 3-2

• “Understanding Latitude and Longitude” on page 3-11

• “Understanding Angles, Directions, and Distances” on page 3-14

• “Understanding Map Projections” on page 3-29

• “Great Circles, Rhumb Lines, and Small Circles” on page 3-32

• “Directions and Areas on the Sphere and Spheroid” on page 3-38

• “Planetary Almanac Data” on page 3-46

See Chapter 2, “Understanding Map Data” for information on how geographic
phenomena are encoded and represented numerically, and how geodata
is structured.

3 Understanding Geospatial Geometry

Understanding Spherical Coordinates

In this section...

“Spheres, Spheroids, and Geoids” on page 3-2

“Geoid and Ellipsoid” on page 3-2

“The Ellipsoid Vector” on page 3-4

Spheres, Spheroids, and Geoids
Working with geospatial data involves geographic concepts (e.g., geographic
and plane coordinates, spherical geometry) and geodetic concepts (such as
ellipsoids and datums). This group of sections explain, at a high level, some of
the concepts that underlie geometric computations on spherical surfaces.

Although the Earth is very round, it is an oblate spheroid rather than
a perfect sphere. This difference is so small (only one part in 300) that
modeling the Earth as spherical is sufficient for making small-scale (world or
continental) maps. However, making accurate maps at larger scale demands
that a spheroidal model be used. Such models are essential, for example,
when you are mapping high-resolution satellite or aerial imagery, or when
you are working with coordinates from the Global Positioning System (GPS).
This section addresses how Mapping Toolbox software accurately models the
shape, or figure, of the Earth and other planets.

Geoid and Ellipsoid
Literally, geoid means Earth-shaped. The geoid is an empirical approximation
of the figure of the Earth (minus topographic relief), its “lumpiness..”
Specifically, it is an equipotential surface with respect to gravity, more or less
corresponding to mean sea level. It is approximately an oblate ellipsoid, but
not exactly so because local variations in gravity create minor hills and dales
(which range from -100 m to +60 m across the Earth). This variation in height
is on the order of one percent of the differences between the semimajor and
semiminor ellipsoid axes used to approximate the Earth’s shape, as described
in “The Ellipsoid Vector” on page 3-4.

3-2

Understanding Spherical Coordinates

Mapping the Geoid
The following figure, made using the geoid data set, maps the figure of the
Earth. To execute these commands, select them all by dragging over the list
in the Help browser, then click the right mouse button and choose Evaluate
Selection:

load geoid; load coast
figure; axesm robinson
geoshow(geoid,geoidlegend,'DisplayType','texturemap')
colorbar('horiz')
geoshow(lat,long,'color','k')

The shape of the geoid is important for some purposes, such as calculating
satellite orbits, but need not be taken into account for every mapping
application. However, knowledge of the geoid is sometimes necessary, for
example, when you compare elevations given as height above mean sea level
to elevations derived from GPS measurements. Geoid representations are
also inherent in datum definitions.

3-3

3 Understanding Geospatial Geometry

You can define ellipsoids in several ways. They are usually specified by
a semimajor and a semiminor axis, but are often expressed in terms of
a semimajor axis and either inverse flattening (which for the Earth, as
mentioned above, is one part in 300) or eccentricity. Whichever parameters are
used, as long as an axis length is included, the ellipsoid is fully constrained
and the other parameters are derivable. The components of an ellipsoid are
shown in the following diagram.

�
�������
&�����'
����

�
����(��
&
)	�������'
����

"���������������

The toolbox includes ellipsoid models that represent the figures of the Sun,
Moon, and planets, as well as a set of the most common ellipsoid models of
the Earth.

The Ellipsoid Vector

• “Mapping Toolbox Ellipsoid Management” on page 3-7

• “Functions that Define Ellipsoid Vectors” on page 3-9

• “What Is the “Correct” Ellipsoid Vector?” on page 3-9

3-4

Understanding Spherical Coordinates

Mapping Toolbox ellipsoid representations are two-element vectors, called
ellipsoid vectors. The ellipsoid vector has the form [semimajor_axis
eccentricity]. The semimajor axis can be in any unit of distance; the choice
of units typically drives the units used for distance outputs in the toolbox
functions. Meters, kilometers, or Earth radii (i.e., a unit sphere) are most
frequently used. See “Functions that Define Ellipsoid Vectors” on page 3-9 for
details.

Eccentricity can range from 0 to 1. Most toolbox functions accept a scalar in
place of an ellipsoid vector. In this case, its value is interpreted as the radius
of a reference sphere, which is equivalent to an ellipsoid with an eccentricity
of zero.

Standard values for the ellipsoid vector, along with several other kinds of
planetary data for each of the planets and the Earth’s moon, are provided by
the Mapping Toolbox almanac function (see “Planetary Almanac Data” on
page 3-46). In the almanac function, the default ellipsoid for the Earth is the
1980 Geodetic Reference System ellipsoid:

format long g
almanac('earth','ellipsoid','kilometers')

ans =
6378.137 0.0818191910428158

Compare this to a spherical ellipsoid definition:

almanac('earth','sphere','kilometers')

ans =
6371 0

You should set format to long g, as above, if you want to display eccentricity
values at full precision.

For example, examine the parameters of the wgs72 (the 1972 World Geodetic
System) ellipsoid, using the almanac function:

wgs72 = almanac('earth','wgs72','kilometers')

wgs72 =

3-5

3 Understanding Geospatial Geometry

6378.135 0.0818188106627487

Compare this with Bessel’s 1841 ellipsoid:

format long g
bessel = almanac('earth','bessel','kilometers')

bessel =
6377.397155 0.0816968312225275

The ellipsoid vector’s values are the semimajor axis, in kilometers, and
eccentricity. Both eccentricity and flattening are dimensionless ratios.
The toolbox has functions to convert elliptical definitions from these forms
to ellipsoid vector form. For example, the function axes2ecc returns an
eccentricity when given semimajor and semiminor axes as arguments.

The ellipse in the previous diagram is highly exaggerated. For the Earth, the
semimajor axis is about 21 kilometers longer than the semiminor axis. Use
the almanac function to verify this:

grs80 = almanac('earth','ellipsoid','kilometers')

grs80 =
6378.137 0.0818191910428158

semiminor = minaxis(grs80)

semiminor =
6356.75231414036

semidiff = grs80(1) - semiminor

semidiff =
21.3846858596444

When compared to the semimajor axis, which is almost 6400 kilometers,
this difference seems insignificant and can be neglected for world and other
small-scale maps. For example, the scale at which 21.38 km would be smaller
than a 0.5 mm line on a map (which is a typical line weight in cartography) is

kmtomm = unitsratio('mm','km')

3-6

Understanding Spherical Coordinates

kmtomm =
1000000

scalelim = semidiff * kmtomm / 0.5

scalelim =
4.2769e+007

The unitsratio function was used to convert the distance semidiff from
kilometers into millimeters. This indicates that the Earth’s eccentricity is not
geometrically meaningful at scales of less than 1:43,000,000, which is roughly
the scale of a world map shown on a page of this document. Consequently,
most Mapping Toolbox functions default to a spherical model of the Earth.
Another reason for defaulting to a sphere is that angular distances are not
meaningful on ellipsoids, and some Mapping Toolbox functions compute or
use angular distances. See “Working with Distances on the Sphere” on page
3-23 for more information. Regardless, you are free to specify any ellipsoid
when you define map axes or otherwise operate on geodata.

Mapping Toolbox Ellipsoid Management
Most maps you make with the toolbox are displayed in a map axes, which is
a MATLAB axes that contains a key data structure called a “map projection
structure,” or mstruct. A reference ellipsoid is fundamental to defining a map
axes, and is stored in the geoid field of the mstruct. (The geographic term
“geoid” actually refers to a model of the shape of the earth that is much more
detailed. See “Geoid and Ellipsoid” on page 3-2 for more information.) Other
mstruct fields specify parameters that define the map axes’ current projection
and for controlling the appearance of the map frame, grid, and grid labels.
You define an mstruct with the axesm or defaultm functions. See “Map Axes
Object Properties” for definitions of the fields found in mstructs.

You can pass an mstruct to certain functions you call. Other functions obtain
the mstruct from the current map axes. (If it is not a map axes, such functions
error.) When axesm or defaultm create a map axes containing an mstruct,
their default behavior is to use a unit sphere for the ellipsoid vector. Unless
you override this default, you must work in units of earth radii (or radii of
whatever planet you are mapping). The following short example shows this
clearly (getm obtains mstruct parameters from a map axes):

3-7

3 Understanding Geospatial Geometry

worldmap australia
ellipsoid = getm(gca,'geoid')

ans =
1 0

The worldmap function chooses map projections and parameters appropriate
to the region specified to it and sets up default values for the rest of the
mstruct. The geoid parameter is the ellipsoid vector that worldmap generated.
The first element of the output vector indicates that the semimajor axis has
a length of 1; the second element indicates that there is no eccentricity.
Therefore, you are working with a sphere—a unit sphere, to be specific.

If, instead of using default ellipsoid vectors, you prefer to be explicit about
your reference ellipsoid, then you can work in the length units of your choice,
on either a sphere or an ellipsoid. In following example (on the sphere),

axesm('mapprojection','mercator',...
'geoid',almanac('earth','radius','meters'))

[x, y] = mfwdtran(0,90)

x =
1.0008e+07

y =
0

the projected map coordinates for a point at 0 degrees latitude, 90 degrees
longitude falls just over 107 meters east of the origin. If you then revert to a
unit sphere (the default ellipsoid), the distance units are quite different:

axesm mercator
[x, y] = mfwdtran(0,90)

x =
1.5708

y =
0

This value for x turns out to equal /2, which might tempt you to think that
the Mercator projection has simply converted degrees to radians. But what
has actually changed is that the point at (0, 90) now maps to a point 1 earth

3-8

Understanding Spherical Coordinates

radius east of the origin. Because Mercator is a cylindrical projection having
no length distortion along the equator, and because a radian is defined in
terms of a sphere’s radius, the numbers just happen to work out this way.

Functions that Define Ellipsoid Vectors
Some functions define a radius or an ellipsoid and can make different choices
when doing so. In addition to axesm and defaultm, which create mstructs
with ellipsoid vectors that default to a unit sphere, the following functions
have default ellipsoid vectors or radii:

The elevation Function. The elevation function uses the GRS 80 ellipsoid
in meters as its default; unless you specify a reference ellipsoid vector
yourself, elevation will assume that input altitudes and the output slant
range are both in units of meters.

The distance and reckon Functions. These functions assume by default
a reference sphere with a radius of 1 (a unit sphere), but scale their range
inputs and outputs to equal the size (in degrees) of the angle subtended by
rays joining the center of the Earth (or planet) to the start and end points.
To obtain results on an ellipsoid you must specify an ellipsoid vector such
as almanac provides.

Angle-Distance Conversion Functions. The default behavior of the 12
angle-distance conversion utilities (itemized in “Working with Distances on
the Sphere” on page 3-23) is different than the above; as discussed below,
these functions assume a sphere with a radius of 6371 kilometers (or,
equivalently, 3440.065 nautical miles or 3958.748 statute miles), which is a
reasonable average radius for Earth.

See the documentation for individual functions if you are not clear whether or
how they may generate default reference ellipsoids.

What Is the “Correct” Ellipsoid Vector?
Many different reference ellipsoids have been proposed through the years.
They differ because of the surveying information upon which they are based,
or because they are intended to approximate the Earth only within a specific
geographic region. In many cases you will want to use either the Geodetic
Referencing System of 1980 (GRS80) ellipsoid or the World Geodetic System

3-9

3 Understanding Geospatial Geometry

1984 (WGS84); their semimajor axis lengths are equal and their semiminor
axes (i.e., center to pole) differ in length by just over 1/10 mm, as the following
code demonstrates:

grs80 = almanac('earth','grs80','meters');
wgs84 = almanac('earth','wgs84','meters');
minaxis(wgs84) - minaxis(grs80)

ans =
1.0482e-004

The toolbox supports several other ellipsoid vectors, for models ranging from
Everest’s 1830 ellipsoid (used for India) to the International Astronomical
Union ellipsoid of 1965 (used for Australia). These can be referenced by the
following statements:

ellipsoid1 = almanac('earth','ellipsoid','kilometers','everest');
ellipsoid2 = almanac('earth','ellipsoid','kilometers','iau65');

See the reference page for the almanac function for more information on the
ellipsoids that are built into the toolbox. If you cannot find the ellipsoid vector
you need, you can create it in the following form:

ellipsoidvec = [semimajor_axis eccentricity]

3-10

Understanding Latitude and Longitude

Understanding Latitude and Longitude
Two angles, latitude and longitude, specify the position of a point on the
surface of a planet. These angles can be in degrees or radians; however,
degrees are far more common in geographic notation.

Latitude is the angle between the plane of the equator and a line connecting
the point in question to the planet’s rotational axis. There are different ways
to construct such lines, corresponding to different types of and resulting values
for latitudes. Latitude is positive in the northern hemisphere, reaching a limit
of +90º at the north pole, and negative in the southern hemisphere, reaching a
limit of -90º at the south pole. Lines of constant latitude are called parallels.
This system is depicted in the following figure, commands for which are

load coast
axesm('ortho','origin',[45 45]); axis off;
gridm on; framem on;
mlabel('equator')
plabel(0); plabel('fontweight','bold')
plotm(lat, long)

3-11

3 Understanding Geospatial Geometry

Longitude is the angle at the center of the planet between two planes that
align with and intersect along the axis of rotation, perpendicular to the plane
of the equator. One plane passes through the surface point in question, and
the other plane is the prime meridian (0º longitude), which is defined by the
location of the Royal Observatory in Greenwich, England. Lines of constant
longitude are called meridians. All meridians converge at the north and south
poles (90ºN and -90ºS), and consequently longitude is under-specified in
those two places.

Longitudes typically range from -180º to +180º, but other ranges can be used,
such as 0º to +360º. Longitudes can also be specified as east of Greenwich
(positive) and west of Greenwich (negative). Adding or subtracting 360º from
its longitude does not alter the position of a point. The toolbox includes a set
of functions (wrapTo180, wrapTo360, wrapToPi, and wrapTo2Pi) that convert
longitudes from one range to another. It also provides unwrapMultipart,
which “unwraps” vectors of longitudes in radians by removing the artifical

3-12

Understanding Latitude and Longitude

discontinuities that result from forcing all values to lie within some 360º-wide
interval.

3-13

3 Understanding Geospatial Geometry

Understanding Angles, Directions, and Distances

In this section...

“Positions, Azimuths, Headings, Distances, Length, and Ranges” on page
3-14

“Working with Length and Distance Units” on page 3-15

“Working with Angles: Units and Representations” on page 3-18

“Working with Distances on the Sphere” on page 3-23

“Angles as Binary and Formatted Numbers” on page 3-27

Positions, Azimuths, Headings, Distances, Length,
and Ranges
When using spherical coordinates, distances are expressed as angles, not
lengths. As there is an infinity of arcs that can connect two points on a sphere
or spheroid, by convention the shortest one (the great circle distance) is used
to measure how close two points are. As is explained in “Working with
Distances on the Sphere” on page 3-23, you can convert angular distance on
a sphere to linear distance. This is different from working on an ellipsoid,
where one can only speak of linear distances between points, and to compute
them one must specify which reference ellipsoid to use.

In spherical or geodetic coordinates, a position is a latitude taken together
with a longitude, e.g., (lat,lon), which defines the horizontal coordinates
of a point on the surface of a planet. When we consider two points,
e.g.,(lat1,lon1) and (lat2,lon2), there are several ways in which their
2–D spatial relationships are typically quantified:

• The azimuth (also called heading) to take to get from (lat1,lon1) to
(lat2,lon2)

• The back azimuth (also called heading) from (lat2,lon2) to (lat1,lon1)

• The spherical distance separating (lat1,lon1) from (lat2,lon2)

• The linear distance (range) separating (lat1,lon1) from (lat2,lon2)

3-14

Understanding Angles, Directions, and Distances

The first three are angular quantities, while the last is a length. Mapping
Toolbox functions exist for computing these quantities. For more information,
see “Directions and Areas on the Sphere and Spheroid” on page 3-38 and also
“Navigation” on page 10-11 for additional examples.

There is no single default unit of distance measurement in the toolbox.
Navigation functions use nautical miles as a default, the almanac function
uses kilometers, and the distance function uses degrees of arc length. For
many functions, the default unit for distances and positions is degrees, but
you need to verify the default assumptions before using any of these functions.

Note When distances are given in terms of angular units (degrees or radians),
be careful to remember that these are specified in terms of arc length. While a
degree of latitude always subtends one degree of arc length, this is only true
for degrees of longitude along the equator.

Working with Length and Distance Units

• “Choosing Units of Length” on page 3-16

• “Converting Units of Length” on page 3-16

• “Computing Conversion Factors” on page 3-17

Linear measurements of lengths and distances on spheres and spheroids
can use the same units they do on the plane, such as feet, meters, miles,
and kilometers. They can be used for

• Absolute positions, such as map coordinates or terrain elevations

• Dimensions, such as a planet’s radius or its semimajor and semiminor axes

• Distances between points or along routes, in 2-D or 3-D space or across
terrain

Length units are needed to describe

• The dimensions of a reference sphere or ellipsoid

• The line-of-sight distance between points

3-15

3 Understanding Geospatial Geometry

• Distances along great circle or rhumb line curves on an ellipsoid or sphere

• X-Y locations in a projected coordinate system or map grid

• Offsets from a map origin (false eastings and northings)

• X-Y-Z locations in Earth-centered Earth-fixed (ECEF) or local vertical
systems

• Heights of various types (terrain elevations above a geoid, an ellipsoid,
or other reference surface)

Choosing Units of Length
Using the toolbox effectively depends on being consistent about units of
length. Depending on the specific function and the way you are calling it,
when you specify lengths, you could be

• Explicitly specifying a radius or reference ellipsoid vector

• Relying on the function itself to specify a default radius or ellipsoid

• Relying on the reference ellipsoid associated with a map projection
structure (mstruct)

Whenever you are doing a computation that involves a reference sphere or
ellipsoid, make sure that the units of length you are using are the same units
used to define the radius of the sphere or semimajor axis of the ellipsoid.
These considerations are discussed below.

Converting Units of Length
The following Mapping Toolbox functions convert between different units
of length:

• unitsratio computes multiplicative factors for converting between 12
different units of length as well as between degrees and radians. You
can use unistratio to perform conversions when neither the input units
of length nor the output units of length are known until run time. See
“Converting Angle Units that Vary at Run Time” on page 3-22 for more
information.

3-16

Understanding Angles, Directions, and Distances

• km2nm, km2sm, nm2km, nm2sm, sm2km, and sm2nm perform simple and
convenient conversions between kilometers, nautical miles, and statute
miles.

These utility functions accept scalars, vectors, and matrices, or any shape. For
an overview of these functions and angle conversion functions, see “Summary:
Available Distance and Angle Conversion Functions” on page 3-26.

Computing Conversion Factors
The unitsratio function can compute the ratio between any of the following
units of length:

• Microns

• Millimeters

• Centimeters

• Meters

• Kilometers

• Inches

• International feet

• U.S. survey feet

• Yards

• International miles

• U.S. survey (statute) miles

The syntax for unitsratio is

ratio = unitsratio(to-unit,from-unit)

You can use the output from unitsratio as a multiplicative conversion factor.

1 For example, the following shows that 4 inches span just over 10
centimeters:

cmPerInch = unitsratio('cm','inch')
cm = cmPerInch * 4

3-17

3 Understanding Geospatial Geometry

cmPerInch =
2.5400

cm =
10.1600

2 To convert this number of centimeters back to inches, type

inch = unitsratio('in','centimeter') * cmPerInch

inch =
1

Note that unitsratio supports various abbreviations for units of length.

The unitsratio function also lets you convert angles between degrees and
radians.

Working with Angles: Units and Representations

• “Radians and Degrees” on page 3-19

• “Default and Variable Angle Units” on page 3-20

• “Degrees, Minutes, and Seconds” on page 3-20

• “Converting Angle Units that Vary at Run Time” on page 3-22

Angular measurements have many distinct roles in geospatial data handling.
For example, they are used to specify

• Absolute positions — latitudes and longitudes

• Relative positions — azimuths, bearings, and elevation angles

• Spherical distances between point locations

Absolute positions are expressed in geodetic coordinates, which are actually
angles between lines or planes on a reference sphere or ellipsoid. Relative
positions use units of angle to express the direction between one place on
the reference body from another one. Spherical distances quantify how far

3-18

Understanding Angles, Directions, and Distances

two places are from one another in terms of the angle subtended along a
great-circle arc. On nonspherical reference bodies, distances are usually given
in linear units such as kilometers (because on them, arc lengths are no longer
proportional to subtended angle).

Radians and Degrees
The basic unit for angles in MATLAB is the radian. For example, if the
variable theta represents an angle and you want to take its sine, you can
use sin(theta) if and only if the value of theta is expressed in radians. If a
variable represents the value of an angle in degrees, then you must convert
the value to radians before taking the sine. For example,

thetaInDegrees = 30;
thetaInRadians = thetaInDegrees * (pi/180)
sinTheta = sin(thetaInRadians)

As shown above, you can scale degrees to radians by multiplying by pi/180.
However, you should consider using the Mapping Toolbox function degtorad
for this purpose:

thetaInRadians = degtorad(thetaInDegrees)

Likewise, you can perform the opposite conversion by applying the inverse
factor,

thetaInDegrees = thetaInRadians * (180/pi)

or by using radtodeg,

thetaInDegrees = radtodeg(thetaInRadians)

The practice of using these functions has two significant advantages:

• It reduces the likelihood of human error (e.g., you might type “pi/108” by
mistake)

• It signals clearly your intent—important to do should others ever read,
modify, or debug your code

The functions radtodeg and degtorad are very simple and efficient, and
operate on vector and higher-dimensioned input as well as scalars.

3-19

3 Understanding Geospatial Geometry

Default and Variable Angle Units
Unlike MATLAB trigonometric functions, Mapping Toolbox functions do not
always assume that angular arguments are in units of radians.

The low-level utility functions intended as building blocks of more complex
features or applications work only in units of radians. Examples include the
functions unwrapMultipart and meridianarc.

Many high-level functions, including distance, can work in either degrees
or radians. Their interpretation of angles is controlled by a string-valued
'angleunits' input argument. (angleunits can be either 'degrees' or
'radians', and can generally be abbreviated.) This flexibility balances
convenience and efficiency, although it means that you must take care to
check what assumptions each function is making about its inputs.

Degrees, Minutes, and Seconds
In all Mapping Toolbox computations that involve angles in degrees,
floating-point numbers (generally MATLAB class double) are used, which
allows for integer and fractional values and rational approximations to
irrational numbers. However, several traditional notations, which are still in
wide use, represent angles as pairs or triplets of numbers, using minutes of
arc (1/60 of degree) and seconds of arc (1/60 of a minute):

• Degrees-minutes notation (DM), e.g., 35° 15’, equal to 35.25°

• Degrees-minutes-seconds notation (DMS) , e.g., 35° 15’ 45’’, equal to
35.2625°

In degrees-minutes representation, an angle is split into three separate parts:

1 A sign

2 A nonnegative, integer-valued degrees component

3 A nonnegative minutes component, real-valued and in the half-open
interval [0 60)

For example, -1 radians is represented by a minus sign (-) and the numbers
[57, 17.7468...]. (The fraction in the minutes part approximates an irrational

3-20

Understanding Angles, Directions, and Distances

number and is rounded here for display purposes. This subtle point is
revisited in the following section.)

The toolbox includes the function degrees2dm to perform conversions of this
sort. You can use this function to export data in DM form, either for display
purposes or for use by another application. For example,

degrees2dm(radtodeg(-1))

ans =
-57.0000 17.7468

More generally, degrees2dm converts a single-columned input to a pair of
columns. Rather than storing the sign in a separate element, degrees2dm
applies to the first nonzero element in each row. Function dm2degrees
converts in the opposite direction, producing a real-valued column vector of
degrees from a two-column array having an integer degrees and real-valued
minutes column. Thus,

dm2degrees(degrees2dm(pi)) == pi

ans =
1

Similarly, in degrees-minutes-seconds representation, an angle is split into
four separate parts:

1 A sign

2 A nonnegative integer-valued degrees component

3 A minutes component which can be any integer from 0 through 59

4 A nonnegative minutes component, real-valued and in the half-open
interval [0 60)

For example, -1 radians is represented by a minus sign (-) and the numbers
[57, 17, 44.8062...], which can be seen using Mapping Toolbox function
degrees2dms,

3-21

3 Understanding Geospatial Geometry

degrees2dms(radtodeg(-1))

ans =
-57.0000 17.0000 44.8062

degrees2dms works like degrees2dm; it converts single-columned input to
three-column form, applying the sign to the first nonzero element in each row.

A fourth function, dms2degrees, is similar to dm2degrees and supports data
import by producing a real-valued column vector of degrees from an array
with an integer-valued degrees column, an integer-value minutes column, and
a real-valued seconds column. As noted, the four functions, degrees2dm,
degrees2dms, dm2degrees, and dms2degrees, are particular about the shape
of their inputs; in this regard they are distinct from the other angle-conversion
functions in the toolbox.

The toolbox makes no internal use of DM or DMS representation. The
conversion functions dm2degrees and dms2degrees are provided only as
tools for data import. Likewise, degrees2dm and degrees2dms are only
useful for displaying geographic coordinates on maps, publishing coordinate
values, and for formatting data to be exported to other applications. Methods
for accomplishing this are discussed below, in “Formatting Latitudes and
Longitudes as Strings” on page 3-28.

Converting Angle Units that Vary at Run Time
Functions degtorad and radtodeg are simple to use and efficient, but how do
you write code to convert angles if you do not know ahead of time what units
the data will use? The toolbox provides a set of utility functions that help you
deal with such situations at run time.

In almost all cases—even at the time you are coding—you know either the
input or destination angle units. When you do, you can use one of these
functions:

• fromDegrees

• toDegrees

• fromRadians

• toRadians

3-22

Understanding Angles, Directions, and Distances

For example, you might wish to implement a very simple sinusoidal projection
on the unit sphere, but allow the input latitudes and longitudes to be in either
degrees or radians. You can accomplish this as follows:

function [x, y] = sinusoidal(lat, lon, angleunits)
[lat, lon] = toRadians(angleunits, lat, lon);
x = lon .* cos(lat);
y = lat;

Whenever angleunits turns out to be 'radians' at run time, the toRadians
function has no real work to do; all the functions in this group handle such
“no-op” situations efficiently.

In the very rare instances when you must code an application or MATLAB
function in which the units of both input angles and output angles remain
unknown until run time, you can still accomplish the conversion by using the
unitsratio function. For example,

fromUnits = 'radians';
toUnits = 'degrees';
piInDegrees = unitsratio(toUnits, fromUnits) * pi

piInDegrees =
180

Working with Distances on the Sphere

• “Examples of Spherical-Linear Distance Conversions” on page 3-25

• “Range as an Angle in the distance and reckon Functions” on page 3-26

• “Summary: Available Distance and Angle Conversion Functions” on page
3-26

Many geospatial domains (seismology, for example) describe distances
between points on the surface of the earth as angles. This is simply the result
of dividing the length of the shortest great-circle arc connecting a pair points
by the radius of the Earth (or whatever planet one is measuring). This gives
the angle (in radians) subtended by rays from each point that join at the
center of the Earth (or other planet). This is sometimes called a “spherical
distance.” You can thus call the resulting number a “distance in radians.” You

3-23

3 Understanding Geospatial Geometry

could also call the same number a “distance in earth radii.” When you work
with transformations of geodata, keep this in mind.

You can easily convert that angle from radians to degrees. For example, you
can call distance to compute the distance in meters from London to Kuala
Lumpur:

latL = 51.5188;
lonL = -0.1300;
latK = 2.9519;
lonK = 101.8200;
earthRadiusInMeters = 6371000;
distInMeters = distance(latL, lonL,...

latK, lonK, earthRadiusInMeters)

distInMeters =
1.0571e+007

Then convert the result to an angle in radians:

distInRadians = distInMeters / earthRadiusInMeters

distInRadians =
1.6593

Finally, convert to an angle in degrees:

distInDegrees = radtodeg(distInRadians)

distInDegrees =
95.0692

This really only makes sense and produces accurate results when we
approximate the Earth (or planet) as a sphere. On an ellipsoid, one can only
describe the distance along a geodesic curve using a unit of length.

Mapping Toolbox software includes a set of six functions to conveniently
convert distances along the surface of the Earth (or another planet) from
units of kilometers (km), nautical miles (nm), or statue miles (sm) to spherical
distances in degrees (deg) or radians (rad):

3-24

Understanding Angles, Directions, and Distances

• km2deg, nm2deg, and sm2deg go from length to angle in degrees

• km2rad, nm2rad, and sm2rad go from length to angle in radians

You could replace the final two steps in the preceding example with

distInKilometers = distInMeters/1000;
earthRadiusInKm = 6371;
km2deg(distInKilometers, earthRadiusInKm)

ans =
95.0692

Because these conversion can be reversed, the toolbox includes another six
convenience functions that convert an angle subtended at the center of a
sphere, in degrees or radians, to a great-circle distance along the surface of
that sphere:

• deg2km, deg2nm, and deg2sm go from angle in degrees to length

• rad2km, rad2nm, and rad2sm go from angle in radians to length

When given a single input argument, all 12 functions assume a radius
of 6,371,000 meters (6371 km, 3440.065 nm, or 3958.748 sm), which is
widely-used as an estimate of the average radius of the Earth. An optional
second parameter can be used to specify a planetary radius (in output length
units) or the name of an object in the Solar System.

Examples of Spherical-Linear Distance Conversions
On the Earth, a degree of arc length at the equator is about 60 nautical miles:

nauticalmiles = deg2nm(1)

nauticalmiles =
60.0405

The Earth is the default assumption for these conversion functions. You can
use other radii, however:

nauticalmiles = deg2nm(1,almanac('moon','radius'))

3-25

3 Understanding Geospatial Geometry

nauticalmiles =
30.3338

The function deg2sm returns distances in statute, rather than nautical, miles:

deg2sm(1)

ans =
69.0932

Range as an Angle in the distance and reckon Functions
Certain syntaxes of the distance and reckon functions use angles to denote
distances in the way described above. In the following statements, the range
argument, rng, is in degrees (along with all the other inputs and outputs):

[rng, az] = distance(lat1, lon1, lat2, lon2)
[latout, lonout] = reckon(lat, lon, rng, az)

By adding the optional units argument, you can use radians instead:

[rng, az] = distance(lat1, lon1, lat2, lon2, 'radians')
[latout, lonout] = reckon(lat, lon, rng, az, 'radians')

If an ellipsoid argument is provided, however, then rng has units of length,
and they match the units of the semimajor axis length of the reference
ellipsoid. If you specify ellipsoid = [1 0] (the unit sphere) rng can be
considered to either an angle in radians or a length defined in units of earth
radii. It has the same value either way. Thus, in the following computation,
lat1, lon1, lat2, lon2, and az are in degrees, but rng will appear to be in
radians:

[rng, az] = distance(lat1, lon1, lat2, lon2, [1 0])

Summary: Available Distance and Angle Conversion Functions
The following table shows the Mapping Toolbox unit-to-unit distance and arc
conversion functions. They all accept scalar, vector, and higher-dimension
inputs. The first two columns and rows involve angle units, the last three
involve distance units:

3-26

Understanding Angles, Directions, and Distances

Functions that Directly Convert Angles, Lengths, and Spherical Distances

Convert To Degrees To Radians To
Kilometers

To Nautical
Miles

To Statute
Miles

Degrees toDegrees
fromDegrees

degtorad
toRadians
fromDegrees

deg2km deg2nm deg2sm

Radians radtodeg
toDegrees
fromRadians

toRadians
fromRadians

rad2km rad2nm rad2sm

Kilometers km2deg km2rad km2nm km2sm

Nautical
Miles

nm2deg nm2rad nm2km nm2sm

Statute
Miles

sm2deg sm2rad sm2km sm2nm

The angle conversion functions along the major diagonal, toDegrees,
toRadians, fromDegrees, and fromRadians, can have no-op results. They are
intended for use in applications that have no prior knowledge of what angle
units might be input or desired as output.

Angles as Binary and Formatted Numbers
The terms decimal degrees and decimal minutes are often used in geospatial
data handling and navigation. The preceding section avoided using them
because its focus was on the representation of angles within MATLAB, where
they can be arbitrary binary floating-point numbers.

However, once an angle in degrees is converted to a string, it is often helpful
to describe that string as representing the angle in decimal degrees. Thus,

num2str(radtodeg(1))

ans =
57.2958

gives a value in decimal degrees. In casual communication it is common to
refer to a quantity such as radtodeg(1) as being in decimal degrees, but
strictly speaking, that is not true until it is somehow converted to a string

3-27

3 Understanding Geospatial Geometry

in base 10. That is, a binary floating-point number is not a decimal number,
whether it represents an angle in degrees or not. If it does represent an angle
and that number is then formatted and displayed as having a fractional part,
only then is it appropriate to speak of “decimal degrees.” Likewise, the term
“decimal minutes” applies when you convert a degrees-minutes representation
to a string, as in

num2str(degrees2dm(radtodeg(1)))

ans =
57 17.7468

Formatting Latitudes and Longitudes as Strings
When a DM or DMS representation of an angle is expressed as a string, it
is traditional to tag the different components with the special characters d,
m, and s, or °, ’, and ".

When the angle is a latitude or longitude, a letter often designates the sign
of the angle:

• N for positive latitudes

• S for negative latitudes

• E for positive longitudes

• W for negative longitudes

For example, 123 degrees, 30 minutes, 12.7 seconds west of Greenwich can be
written as 123d30m12.7sW, 123° 30° 12.7" W, or -123° 30° 12.7".

Use the function str2angle to import latitude and longitude data formatted
as such strings. Conversely, you can format numeric degree data for display
or export with angl2str, or combine degrees2dms or degrees2dm with
sprintf to customize formatting.

See “Degrees, Minutes, and Seconds” on page 3-20 for more details about
DM and DMS representation.

3-28

Understanding Map Projections

Understanding Map Projections

In this section...

“What Is a Map Projection?” on page 3-29

“Forward and Inverse Projection” on page 3-30

“Projection Distortions” on page 3-30

What Is a Map Projection?
While all geospatial data needs to be georeferenced (pinned to locations on the
Earth’s surface) in some way, a given data set might or might not explicitly
describe locations with geographic coordinates (latitudes and longitudes).
When it does, many applications—particularly map display—cannot make
direct use of geographic coordinates, and must transform them in some way to
plane coordinates. This transformation process, called map projection, is both
algorithmic and the core of the cartographer’s art.

A map projection is a procedure that unwraps a sphere or ellipsoid to flatten
it onto a plane. Usually this is done through an intermediate surface such
as a cylinder or a cone, which is then unwrapped to lie flat. Consequently,
map projections are classified as cylindrical, conical, and azimuthal (a direct
transformation of the surface of part of a spheroid to a circle). See “The
Three Main Families of Map Projections” on page 8-5 for discussions and
illustrations of how these transformations work.

Mapping Toolbox map projection libraries feature dozens of map projections,
which you principally control with axesm. Some are ancient and well-known
(such as Mercator), others are ancient and obscure (such as Bonne), while
some are modern inventions (such as Robinson). Some are suitable for
showing the entire world, others for half of it, and some are only useful over
small areas. When geospatial data has geographic coordinates, any projection
can be applied, although some are not good choices. The toolbox can project
both vector data and raster data.

See Chapter 8, “Using Map Projections and Coordinate Systems” for more
details on the properties of different classes of projections. For a list of
Mapping Toolbox map projections, with links to their reference pages,
see Chapter 11, “Map Projections Reference”. “Summary and Guide to

3-29

3 Understanding Geospatial Geometry

Projections” on page 8-63 lists all the available map projections and their
intrinsic properties.

Forward and Inverse Projection
When geospatial data has plane coordinates (i.e., it comes preprojected, as
do many satellite images and municipal map data sets), it is usually possible
to recover geographic coordinates if the projection parameters and datum
are known. Using this information, you can perform an inverse projection,
running the projection backward to solve for latitude and longitude. The
toolbox can perform accurate inverse projections for any of its projection
functions as long as the original projection parameters and reference ellipsoid
(or spherical radius) are provided to it.

Note Converting a position given in latitude-longitude to its equivalent in
a projected map coordinate system involves converting from units of angle
to units of length. Likewise, unprojecting a point position changes its units
from those of length to those of angle). Unit conversion functions such as
deg2km and km2deg also convert coordinates between angles and lengths,
but do not transform the space they inhabit. You cannot use them to project
or unproject coordinate data.

Projection Distortions
All map projections introduce distortions compared to maps on globes.
Distortions are inherent in flattening the sphere, and can take several forms:

• Areas — Relative size of objects (such as continents)

• Distances — Relative separations of points (such as a set of cities)

• Directions — Azimuths (angles between points and the poles)

• Shapes — Relative lengths and angles of intersection

Some classes of map projections maintain areas, and others preserve local
shapes, distances, and/or directions. No projection, however, can preserve
all these characteristics. Choosing a projection thus always requires
compromising accuracy in some way, and that is one reason why so many
different map projections have been developed. For any given projection,

3-30

Understanding Map Projections

however, the smaller the area being mapped, the less distortion it introduces
if properly centered. Mapping Toolbox tools help you to quantify and visualize
projection distortions.

3-31

3 Understanding Geospatial Geometry

Great Circles, Rhumb Lines, and Small Circles

In this section...

“Great Circles” on page 3-32

“Rhumb Lines” on page 3-32

“Small Circles” on page 3-33

Great Circles
In plane geometry, lines have two important characteristics. A line represents
the shortest path between two points, and the slope of such a line is constant.
When describing lines on the surface of a spheroid, however, only one of these
characteristics can be guaranteed at a time.

A great circle is the shortest path between two points along the surface of
a sphere. The precise definition of a great circle is the intersection of the
surface with a plane passing through the center of the planet. Thus, great
circles always bisect the sphere. The equator and all meridians are great
circles. All great circles other than these do not have a constant azimuth, the
spherical analog of slope; they cross successive meridians at different angles.
That great circles are the shortest path between points is not always apparent
from maps, because very few map projections (the Gnomonic is one of them)
represent arbitrary great circles as straight lines.

Because they define paths that minimize distance between two (or three)
points, great circles are examples of geodesics. In general, a geodesic is the
straightest possible path constrained to lie on a curved surface, independent
of the choice of a coordinate system. The term comes from the Greek geo-,
earth, plus daiesthai, to divide, which is also the root word of geodesy, the
science of describing the size and shape of the Earth mathematically.

Rhumb Lines
A rhumb line is a curve that crosses each meridian at the same angle. This
curve is also referred to as a loxodrome (from the Greek loxos, slanted, and
drome, path). Although a great circle is a shortest path, it is difficult to
navigate because your bearing (or azimuth) continuously changes as you

3-32

Great Circles, Rhumb Lines, and Small Circles

proceed. Following a rhumb line covers more distance than following a
geodesic, but it is easier to navigate.

All parallels, including the equator, are rhumb lines, since they cross all
meridians at 90º. Additionally, all meridians are rhumb lines, in addition to
being great circles. A rhumb line always spirals toward one of the poles,
unless its azimuth is true east, west, north, or south, in which case the rhumb
line closes on itself to form a parallel of latitude (small circle) or a pair of
antipodal meridians.

The following figure depicts a great circle and one possible rhumb line
connecting two distant locations. Descriptions and examples of how to
calculate points along great circles and rhumb lines appear below.

Rhumb Line
(constant azimuth)

Great Circle
(shortest distance)

Small Circles
In addition to rhumb lines and great circles, one other smooth curve is
significant in geography, the small circle. Parallels of latitude are all small
circles (which also happen to be rhumb lines). The general definition of
a small circle is the intersection of a plane with the surface of a sphere.
On ellipsoids, this only yields true small circles when the defining plane is
parallel to the equator. Mapping Toolbox software extends this definition to

3-33

3 Understanding Geospatial Geometry

include planes passing through the center of the planet, so the set of all small
circles includes all great circles as limiting cases. This usage is not universal.

Small circles are most easily defined by distance from a point. All points 45
nm (nautical miles) distant from (45ºN,60ºE) would be the description of one
small circle. If degrees of arc length are used as a distance measurement,
then (on a sphere) a great circle is the set of all points 90º distant from a
particular center point.

For true small circles, the distance must be defined in a great circle sense, the
shortest distance between two points on the surface of a sphere. However,
Mapping Toolbox functions also can calculate loxodromic small circles, for
which distances are measured in a rhumb line sense (along lines of constant
azimuth). Do not confuse such figures with true small circles.

Computing Small Circles
You can calculate vector data for points along a small circle in two ways. If
you have a center point and a known radius, use scircle1; if you have a
center point and a single point along the circumference of the small circle, use
scircle2. For example, to get data points describing the small circle at 10º
distance from (67ºN, 135ºW), use the following:

[latc,lonc] = scircle1(67,-135,10);

To get the small circle centered at the same point that passes through the
point (55ºN,135ºW), use scircle2:

[latc,lonc] = scircle2(67,-135,55,-135);

3-34

Great Circles, Rhumb Lines, and Small Circles

�������� �������	

�
��
������� �
��
�������

*	��	��������

+���	�

�
���
�
�
�����

The scircle1 function also allows you to calculate points along a specific
arc of the small circle. For example, if you want to know the points 10º in
distance and between 30º and 120º in azimuth from (67ºN,135ºW), simply
provide arc limits:

[latc,lonc] = scircle1(67,-154,10,[30 120]);

��������	
���	��	������

��������	����

������������

�����
�	��
�,

����������%��
���������

��
��
�	��
�,

+���	�

�
��
�
�����

"-��	�%.�/�01�

"-��	�%2�/�.21�

When an entire small circle is calculated, the data is in polygon format. For
all calculated small circles, 100 points are returned unless otherwise specified.
You can calculate several small circles at once by providing vector inputs. For
more information, see the scircle1 and scircle2 function reference pages.

3-35

3 Understanding Geospatial Geometry

An Annotated Map Illustrating Small Circles. The following Mapping
Toolbox commands illustrate generating small circles of the types described
above, including the limiting case of a large circle. To execute these
commands, select them all by dragging over the list in the Help browser, then
click the right mouse button and choose Evaluate Selection:

figure;
axesm ortho; gridm on; framem on
setm(gca,'Origin', [45 30 30], 'MLineLimit', [75 -75],...
'MLineException',[0 90 180 270])
A = [45 90];
B = [0 60];
C = [0 30];
sca = scircle1(A(1), A(2), 20);
scb = scircle2(B(1), B(2), 0, 150);
scc = scircle1('rh',C(1), C(2), 20);
plotm(A(1), A(2),'ro','MarkerFaceColor','r')
plotm(B(1), B(2),'bo','MarkerFaceColor','b')
plotm(C(1), C(2),'mo','MarkerFaceColor','m')
plotm(sca(:,1), sca(:,2),'r')
plotm(scb(:,1), scb(:,2),'b--')
plotm(scc(:,1), scc(:,2),'m')
textm(50,0,'Normal Small Circle')
textm(46,6,'(20\circ from point A)')
textm(4.5,-10,'Loxodromic Small Circle')
textm(4,-6,'(20\circ from point C')
textm(-2,-4,'in rhumb line sense)')
textm(40,-60,'Great Circle as Small Circle')
textm(45,-50,'(90\circ from point B)')

The result is the following display.

3-36

Great Circles, Rhumb Lines, and Small Circles

3-37

3 Understanding Geospatial Geometry

Directions and Areas on the Sphere and Spheroid

In this section...

“About Azimuths” on page 3-38

“Reckoning — The Forward Problem” on page 3-38

“Distance, Azimuth, and Back-Azimuth (the Inverse Problem)” on page 3-41

“Measuring Area of Spherical Quadrangles” on page 3-44

About Azimuths
Azimuth is the angle a line makes with a meridian, measured clockwise from
north. Thus the azimuth of due north is 0º, due east is 90º, due south is 180º,
and due west is 270º. You can instruct several Mapping Toolbox functions to
compute azimuths for any pair of point locations, either along rhumb lines
or along great circles. These will have different results except along cardinal
directions. For great circles, the result is the azimuth at the initial point of
the pair defining a great circle path. This is because great circle azimuths
other than 0º, 90º, 180º, and 270º do not remain constant. Azimuths for rhumb
lines are constant along their entire path (by definition).

For rhumb lines, computing an azimuth backward (from the second point to
the first) yields the complement of the forward azimuth ((Az + 180º) mod
360º). For great circles, the back azimuth is generally not the complement,
and the difference depends on the distance between the two points.

In addition to forward and back azimuths, Mapping Toolbox functions can
compute locations of points a given distance and azimuth from a reference
point, and can calculate tracks to connect waypoints, along either great circles
or rhumb lines on a sphere or ellipsoid.

Reckoning — The Forward Problem
A common problem in geographic applications is the determination of a
destination given a starting point, an initial azimuth, and a distance. In the
toolbox, this process is called reckoning. A new position can be reckoned in a
great circle or a rhumb line sense (great circle or rhumb line track).

3-38

Directions and Areas on the Sphere and Spheroid

As an example, an airplane takes off from La Guardia Airport in New York
(40.75ºN, 73.9ºW) and follows a northwestern rhumb line flight path at 200
knots (nautical miles per hour). Where would it be after 1 hour?

[rhlat,rhlong] = reckon('rh',40.75,-73.9,nm2deg(200),315)

rhlat =
43.1054

rhlong =
-77.0665

Notice that the distance, 200 nautical miles, must be converted to degrees of
arc length with the nm2deg conversion function to match the latitude and
longitude inputs. If the airplane had a flight computer that allowed it to
follow an exact great circle path, what would the aircraft’s new location be?

[gclat,gclong] = reckon('gc',40.75,-73.9,nm2deg(200),315)

gclat =
43.0615

gclong =
-77.1238

Notice also that for short distances at these latitudes, the result hardly differs
between great circle and rhumb line. The two destination points are less than
4 nautical miles apart. Incidentally, after 1 hour, the airplane would be just
north of New York’s Finger Lakes.

Calculating Tracks — Great Circles and Rhumb Lines
You can generate vector data corresponding to points along great circle or
rhumb line tracks using track1 and track2. If you have a point on the track
and an azimuth at that point, use track1. If you have two points on the track,
use track2. For example, to get the great circle path starting at (31ºS, 90ºE)
with an azimuth of 45º with a length of 12º, use track1:

[latgc,longc] = track1('gc',-31,90,45,12);

For the great circle from (31ºS, 90ºE) to (23ºS, 110ºE), use track2:

[latgc,longc] = track2('gc',-31,90,-23,110);

3-39

3 Understanding Geospatial Geometry

�����
����	

*	��	��������

*	��	��������

������������� �������������

�����������

"-��	�%���������

The track1 function also allows you to specify range endpoints. For example,
if you want points along a rhumb line starting 5º away from the initial point
and ending 13º away, at an azimuth of 55º, simply specify the range limits:

[latrh,lonrh] = track1('rh',-31,90,55,[5 13]);

�������
�����

"-��	�%

*	��	��������

+���
. +���
2

�����	
���	����	������

When no range is provided for track1, the returned points represent a
complete track. For great circles, a complete track is 360º, encircling the
planet and returning to the initial point. For rhumb lines, the complete track
terminates at the poles, unless the azimuth is 90º or 270º, in which case the
complete track is a parallel that returns to the initial point.

For calculated tracks, 100 points are returned unless otherwise specified. You
can calculate several tracks at one time by providing vector inputs. For more

3-40

Directions and Areas on the Sphere and Spheroid

information, see the track1 and track2 reference pages. More vector path
calculations are described later in “Navigation” on page 10-11.

Distance, Azimuth, and Back-Azimuth (the Inverse
Problem)
When Mapping Toolbox functions calculate the distance between two points
in geographic space, the result depends upon whether you specify great circle
or rhumb line distance. The distance function returns the appropriate
distance between two points as an angular arc length, employing the same
angular units as the input latitudes and longitudes. The default path type
is the shorter great circle, and the default angular units are degrees. The
previous figure shows two points at (15ºS, 0º) and (60ºN, 150ºE). The great
circle distance between them, in degrees of arc, is as follows:

distgc = distance(-15,0,60,150)

distgc =
129.9712

The rhumb line distance is greater:

distrh = distance('rh',-15,0,60,150)

distrh =
145.0288

To determine how much longer the rhumb line path is in, say, kilometers, you
can use a distance conversion function on the difference:

kmdifference = deg2km(distrh-distgc)

kmdifference =
1.6744e+03

Several distance conversion functions are available in the toolbox, supporting
degrees, radians, kilometers, meters, statute miles, nautical miles, and feet.
Converting distances between angular arc length units and surface length
units requires the radius of a planet or spheroid. By default, the radius
of the Earth is used.

3-41

3 Understanding Geospatial Geometry

Calculating Azimuth and Elevation
Azimuth is the angle a line makes with a meridian, taken clockwise from
north. When the azimuth is calculated from one point to another using the
toolbox, the result depends upon whether you want a great circle or a rhumb
line azimuth. For great circles, the result is the azimuth at the starting point
of the connecting great circle path. In general, the azimuth along a great
circle is not constant. For rhumb lines, the resulting azimuth is constant
along the entire path.

Azimuths, or bearings, are returned in the same angular units as the input
latitudes and longitudes. The default path type is the shorter great circle,
and the default angular units are degrees. In the example, the great circle
azimuth from the first point to the second is

azgc = azimuth(-15,0,60,150)

azgc =
19.0391

For the rhumb line, the constant azimuth is

azrh = azimuth('rh',-15,0,60,150)

azrh =
58.8595

One feature of rhumb lines is that the inverse azimuth, from the second point
to the first, is the complement of the forward azimuth and can be calculated
by simply adding 180º to the forward value:

inverserh = azimuth('rh',60,150,-15,0)

inverserh =
238.8595

difference = inverserh-azrh

difference =
180

This is not true, in general, of great circles:

3-42

Directions and Areas on the Sphere and Spheroid

inversegc = azimuth('gc',60,150,-15,0)

inversegc =
320.9353

difference = inversegc-azgc

difference =
301.8962

The azimuths associated with cardinal and intercardinal compass directions
are the following:

North 0º or 360º

Northeast 45º

East 90º

Southeast 135º

South 180º

Southwest 225º

West 270º

Northwest 315º

Elevation is the angle above the local horizontal of one point relative to the
other. To compute the elevation angle of a second point as viewed from the
first, provide the position and altitude of the points. The default units are
degrees for latitudes and longitudes and meters for altitudes, but you can
specify other units for each. What are the elevation, slant range, and azimuth
of a point 10 kilometers east and 10 kilometers above a surface point?

[elevang,slantrange,azim] = elevation(0,0,0,0,km2deg(10),10000)

elevang =

44.9005

3-43

3 Understanding Geospatial Geometry

slantrange =

1.4156e+004

azim =

90

On an ellipsoid, azimuths returned from elevation generally will differ from
those returned by azimuth and distance.

Measuring Area of Spherical Quadrangles
In solid geometry, the area of a spherical quadrangle can be exactly calculated.
A spherical quadrangle is the intersection of a lune and a zone. In geographic
terms, a quadrangle is defined as a region bounded by parallels north and
south, and meridians east and west.

Zone

Quadrangle

Lune

In the pictured example, a quadrangle is formed by the intersection of a zone,
which is the region bounded by 15ºN and 45ºN latitudes, and a lune, which
is the region bounded by 0º and 30ºE longitude. Under the spherical planet

3-44

Directions and Areas on the Sphere and Spheroid

assumption, the fraction of the entire spherical surface area inscribed in the
quadrangle can be calculated:

area = areaquad(15,0,45,30)

area =
0.0187

That is, less than 2% of the planet’s surface area is in this quadrangle. To
get an absolute figure in, for example, square miles, you must provide the
appropriate spherical radius. The radius of the Earth is about 3958.9 miles:

area = areaquad(15,0,45,30,3958.9)

area =
3.6788e+06

The surface area within this quadrangle is over 3.6 million square miles for a
spherical Earth.

3-45

3 Understanding Geospatial Geometry

Planetary Almanac Data
Mapping Toolbox functions include one that provides almanac data (size and
shape statistics) for the major bodies of our solar system. Basic geometric
parameters, such as ellipsoid vectors, radii, surface areas, and volumes, can
be accessed for the Sun, the Earth’s moon, and all of the planets, in any of the
supported units of distance measurement.

Many planets have ellipsoid vectors available. Some planets return spherical
ellipsoid vectors only:

format long g
almanac('earth','ellipsoid','nauticalmiles')

ans =

3443.91846652268 0.0818191910428158

almanac('mars','ellipsoid','kilometers')

ans =

3396.9 0.1105

almanac('moon','ellipsoid','statutemiles')

ans =

1079.94097222222 0

When you specify 'radius', a scalar is returned representing the radius of
the best spherical model of the planet. Notice that for a spherical model, the
radius in radians is 1:

almanac('mercury','radius','kilometers')

ans =
2439

almanac('neptune','radius','radians')

3-46

Planetary Almanac Data

ans =
1

Surface areas and volumes are calculated based on a spherical model by
default. In most cases, you can use the ellipsoid model instead, and for the
Earth you can specify any of the supported ellipsoid models. You can also
request the actual tabulated values of the Earth:

almanac('mars','surfarea','kilometers','ellipsoid')

ans =
1.4441e+08

almanac('earth','volume','kilometers','international')

ans =
1.0833e+12

almanac('earth','volume','kilometers','actual')

ans =
1.0832e+12

For a complete description of available data, see the almanac reference page.

3-47

3 Understanding Geospatial Geometry

3-48

4

Creating and Viewing Maps

• “Introduction to Mapping Graphics” on page 4-2

• “Using worldmap and usamap” on page 4-4

• “Axes for Drawing Maps” on page 4-12

• “Controlling Map Frames and Grids” on page 4-48

• “Displaying Vector Data with Mapping Toolbox Functions” on page 4-60

• “Displaying Data Grids” on page 4-70

• “Interacting with Displayed Maps” on page 4-78

4 Creating and Viewing Maps

Introduction to Mapping Graphics
Even though geospatial data often is manipulated and analyzed without being
displayed, high-quality interactive cartographic displays can play valuable
roles in exploratory data analysis, application development, and presentation
of results.

Using Mapping Toolbox capabilties, you can display geographic information
almost as easily as you can display tabular or time-series data in MATLAB
plots. Most mapping functions are similar to MATLAB plotting functions,
except they accept data with geographic/geodetic coordinates (latitudes and
longitudes) instead of Cartesian and polar coordinates. Mapping functions
typically have the same names as their MATLAB counterparts, with the
addition of an 'm' suffix (for maps). For example, the Mapping Toolbox analog
to the MATLAB plot function is plotm.

Mapping Toolbox software manages most of the details in displaying a map.
It projects your data, cuts and trims it to specified limits, and displays the
resulting map at various scales. With the toolbox you can also add customary
cartographic elements, such as a frame, grid lines, coordinate labels, and
text labels, to your displayed map. If you change your projection properties,
or even the projection itself, some Mapping Toolbox map displays are
automatically redrawn with the new settings, undoing any cuts or trims if
necessary. See “Accessing, Computing, and Inverting Map Projection Data”
on page 8-37 for information on how to project data without displaying it.

The toolbox also makes it easy to modify and manipulate maps. You can
modify the map display and mapped objects either from the command line or
through and property editing tools you can invoke by clicking on the display.

4-2

Introduction to Mapping Graphics

Note In its current implementation, the toolbox maintains the map projection
and display properties by storing special data in the UserData property of
the map axes. The toolbox also takes over the UserData property of mapped
objects. Therefore, never attempt to set the UserData property of a map axes
or a projected map object. Do not apply the MATLAB get function to axes
UserData, depend on the contents of UserData in any way, or apply functions
that set or get UserData to the handles of map axes or mapped objects. Only
use the Mapping Toolbox functions getm and setm to obtain and modify map
axes properties.

4-3

4 Creating and Viewing Maps

Using worldmap and usamap

In this section...

“Continent, Country, Region, and State Maps Made Easy” on page 4-4

“Using worldmap” on page 4-5

“Using usamap” on page 4-7

Continent, Country, Region, and State Maps Made
Easy
Mapping Toolbox functions axesm and setm enable you to control the full range
of properties when constructing a projected map axes. Functions worldmap
and usamap, on the other hand, trade control for simplicity and convenience.
These two functions each create a map axes object that is suitable for a
country or region of the world or the United States, automatically selecting
the map projection, limits, and other properties based on the name of the area
you want to map. Once you have jump-started your map with worldmap or
usamap, you are ready to add your data, using geoshow or any of the lower
level geographic data display functions. Optionally, you can use the map axes
object created by worldmap or usamap as a starting point, and then customize
it by adjusting selected properties with setm.

Setting Background Colors for Map Displays
The default color for MATLAB figures is gray. If you prefer that your maps
have white backgrounds instead, you can create figures with the command

figure('Color','white')

If you want a custom background color, specify a color triplet in place of
white. For example, to make a beige background, type

figure('Color',[.95 .9 .8])

To give a white background to an existing figure, type

set(gca,'color','white')

4-4

Using worldmap and usamap

If you want all figures in a session to have white backgrounds, set this as a
default with the command

set(0, 'DefaultFigureColor', 'white');

To avoid having to do this every time you start MATLAB, place this command
in your startup.m file.

You can also use the Property Editor, part of the MATLAB plotting tools,
to modify background colors for figures and axes. See “Plotting Tools —
Interactive Plotting” in the MATLAB Graphics documentation for more
information.

Using worldmap
Here are two examples that create simple maps using sample data sets from
matlabroot/toolbox/map/mapdemos. The first one creates a map of South
America with land areas, major lakes and rivers, and populated places.

1 First, set up the map frame, allowing worldmap to pick a projection:

figure
worldmap 'south america'
axis off

4-5

4 Creating and Viewing Maps

 80
° W 60° W 40°

 W

 60
° S

 40
° S

 20
° S

 0
°

2 You can find out what map projection worldmap selected this way:

getm(gca,'MapProjection')

ans =
eqdconic

This denotes the Equidistant Conic Projection, which is appropriate for
regions in middle latitudes that are elongated along the polar axis.

3 Next, use geoshow to import data for land areas, major rivers, and major
cities from shapefiles and display it using colors you specify:

4-6

Using worldmap and usamap

geoshow('landareas.shp', 'FaceColor', [0.5 0.7 0.5])
geoshow('worldrivers.shp', 'Color', 'blue')
geoshow('worldcities.shp', 'Marker', '.', 'Color', 'red')

The map now looks like this.

Using usamap
The usamap function allows you to make maps of the United States as a whole,
just the conterminous portion (the “lower 48” states), groups of states or a
single state. The easiest way to use it is to type

usamap

4-7

4 Creating and Viewing Maps

at the MATLAB prompt. This opens a GUI with a list box from which you can
select the entire U.S., the conterminous states, or an individual state to map.
The map axes you create with usamap has a labelled grid fitted around the
area you specify, but contains no data, allowing you to generate the kind of
map you want using display functions such as geoshow.

This example creates a map of the Chesapeake Bay region by specifying
geographic limits.

1 First, specify limits and set up a map axes object:

latlim = [37 40];
lonlim = [-78 -74];
figure
ax = usamap(latlim,lonlim);
axis off

4-8

Using worldmap and usamap

 78° W 77° W 76° W 75° W 74
° W

 37° N

 38° N

 39° N

 40° N

The Lambert Conformal Conic Projection is often used for maps of the
conterminous United States.

2 Here is the map projection usamap selected:

getm(gca,'MapProjection')

ans =
lambert

3 Next, use shaperead to read U.S. state polygon boundaries from the
usastatehi demo shapefile into a geostruct named states:

states = shaperead('usastatehi',...
'UseGeoCoords', true, 'BoundingBox', [lonlim', latlim']);

4-9

4 Creating and Viewing Maps

4 Make a symbolspec to create a political map using the polcmap function:

faceColors = makesymbolspec('Polygon',...
{'INDEX', [1 numel(states)], ...
'FaceColor', polcmap(numel(states))});

5 Display the filled polygons with geoshow:

geoshow(ax, states, 'SymbolSpec', faceColors)

6 Extract the names for states within the window from the geostruct and use
textm to plot them at the label points provided by the geostruct:

for k = 1:numel(states)
labelPointIsWithinLimits =...

latlim(1) < states(k).LabelLat &&...
latlim(2) > states(k).LabelLat &&...
lonlim(1) < states(k).LabelLon &&...
lonlim(2) > states(k).LabelLon;

if labelPointIsWithinLimits
textm(states(k).LabelLat,...
states(k).LabelLon, states(k).Name, ...

'HorizontalAlignment', 'center')
end

end
textm(38.2,-76.1,' Chesapeake Bay ',...

'fontweight','bold','Rotation', 270)

4-10

Using worldmap and usamap

 78° W 77° W 76° W 75° W 74
° W

 37° N

 38° N

 39° N
DelawareMaryland

District of Columbia

C
h
e
s
a
p
e
a
k
e

B
a
y

 40° N

Note that as polcmap assigns random pastel colors to patches, your map
might display different colors than this example. For further information on
options for these functions, see the reference pages for geoshow, shaperead,
worldmap, and usamap.

4-11

4 Creating and Viewing Maps

Axes for Drawing Maps

In this section...

“What Is a Map Axes?” on page 4-12

“Using axesm” on page 4-13

“Accessing and Manipulating Map Axes Properties” on page 4-14

“Using the Map Limit Properties” on page 4-19

“Switching Between Projections” on page 4-34

“Projected and Unprojected Graphic Objects” on page 4-39

What Is a Map Axes?
When you create a map, you can use one of the Mapping Toolbox built-in user
interfaces (UIs), or you can build the graphic with MATLAB and Mapping
Toolbox functions. Many MATLAB graphics are built using the axes function:

axes
axes('PropertyName',PropertyValue,...)
axes(h)
h = axes(...)

Mapping Toolbox functions include an extended version of axes, called
axesm, that includes information about the current coordinate system (map
projection), as well as data to define the map grid and its labeling, the map
frame and its limits, and other properties. Its syntax is similar to that of axes:

axesm
axesm(PropertyName,PropertyValue,...)
axesm(ProjectionFcn,PropertyName,PropertyValue,...)

The axesm function without arguments brings up a UI that lists all supported
projections and assists in defining their parameters. You can also summon
this UI with the axesmui function once you have created a map axes.

You can also list all the names, classes, and ID strings of Mapping Toolbox
map projections with the maps function.

4-12

Axes for Drawing Maps

Axes created with axesm share all properties associated with regular axes,
and have additional properties related to projections, scale, and positioning
in geographic coordinates. See the axes and axesm reference pages for lists
of properties.

You can place many types of objects in a map axes, such as lines, patches,
markers, scale rulers, north arrows, grids, and text. You can use the handlem
function and its associated UI to list these objects and obtain handles to them.
See the handlem reference page for a list of the objects that can occupy a
map axes and how to query for them.

Map axes objects created by axesm contain projection information in a
structure. For an example of what these properties are, type

h = axesm('MapProjection','mercator')

and then use the getm function to retrieve all the map axes properties:

p = getm(h)

For complete descriptions of all map axes properties, see the axesm reference
page. For more information on the use of axesmui, refer to the axesmui
reference page.

Using axesm
The figure window created using axesm contains the same set of tools and
menus as any MATLAB figure, and is by default blank, even if there is map
data in your workspace. You can toggle certain properties, such as grids,
frames, and axis labels, by right-clicking in the figure window to obtain
a pop-up menu.

You can define multiple independent figures containing map axes, but only
one can be active at any one time. Return handles for them when you create
them to allow them to be referenced when they are no longer current. Use
axes(handle) to activate an existing map axes object.

4-13

4 Creating and Viewing Maps

Accessing and Manipulating Map Axes Properties
Just as the properties of the underlying standard axes can be accessed and
manipulated using the MATLAB functions set and get, map axes properties
can also be accessed and manipulated using the functions setm and getm.

Note Use the axesm function only to create a map axes object. Use the setm
function to modify existing map axes.

1 As an example, create a map axes object containing no map data:

axesm('MapProjection','miller','Frame','on')

Note that you specify MapProjection string values in lowercase. At this
point you can begin to customize the map. For example, you might decide
to make the frame lines bordering the map thicker. First, you need to
identify the current line width of the frame, which you do by querying
the current axes, identified as gca.

2 Access the current FLineWidth property value by typing

getm(gca,'FLineWidth')
ans =
2

3 Now reset the line width to four points. The default fontunits value for
axes is points. You can set fontunits to be points, normalized, inches,
centimeters, or pixels.

setm(gca,'FLineWidth',4)

4 You can set any number of properties simultaneously with setm. Continue
by reducing the line width, changing the projection to equidistant
cylindrical, and verify the changes:

setm(gca,'FLineWidth',3,'MapProjection','eqdcylin')

getm(gca,'FLineWidth')
ans =
3

4-14

Axes for Drawing Maps

getm(gca,'MapProjection')
ans =
eqdcylin

5 To inspect the entire set of map axes properties at their current settings,
use the following command:

getm(gca)
ans =

mapprojection: 'eqdcylin'
zone: []

angleunits: 'degrees'
aspect: 'normal'

falseeasting: []
falsenorthing: []

fixedorient: []
geoid: [1 0]

maplatlimit: [-90 90]
maplonlimit: [-180 180]

mapparallels: 30
nparallels: 1

origin: [0 0 0]
scalefactor: []

trimlat: [-90 90]
trimlon: [-180 180]

frame: 'on'
ffill: 100

fedgecolor: [0 0 0]
ffacecolor: 'none'
flatlimit: [-90 90]

flinewidth: 3
flonlimit: [-180 180]

grid: 'off'
galtitude: Inf

gcolor: [0 0 0]
glinestyle: ':'
glinewidth: 0.5000

mlineexception: []
mlinefill: 100

mlinelimit: []

4-15

4 Creating and Viewing Maps

mlinelocation: 30
mlinevisible: 'on'

plineexception: []
plinefill: 100

plinelimit: []
plinelocation: 15
plinevisible: 'on'

fontangle: 'normal'
fontcolor: [0 0 0]
fontname: 'helvetica'
fontsize: 9

fontunits: 'points'
fontweight: 'normal'

labelformat: 'compass'
labelunits: 'degrees'

meridianlabel: 'off'
mlabellocation: 30
mlabelparallel: 90

mlabelround: 0
parallellabel: 'off'

plabellocation: 15
plabelmeridian: -180

plabelround: 0

Note that the list of properties includes both those particular to map axes
and general ones that apply to all MATLAB axes.

6 Similarly, use the setm function alone to display the set of properties, their
enumerated values, and defaults:

setm(gca)
AngleUnits [{degrees} | radians]
Aspect [{normal} | transverse]
FalseEasting
FalseNorthing
FixedOrient FixedOrient is a read-only property
Geoid
MapLatLimit
MapLonLimit
MapParallels

4-16

Axes for Drawing Maps

MapProjection
NParallels NParallels is a read-only property
Origin
ScaleFactor
TrimLat TrimLat is a read-only property
TrimLon TrimLon is a read-only property
Zone
Frame [on | {off}]
FEdgeColor
FFaceColor
FFill
FLatLimit
FLineWidth
FLonLimit
Grid [on | {off}]
GAltitude
GColor
GLineStyle [- | -- | -. | {:}]
GLineWidth
MLineException
MLineFill
MLineLimit
MLineLocation
MLineVisible [{on} | off]
PLineException
PLineFill
PLineLimit
PLineLocation
PLineVisible [{on} | off]
FontAngle [{normal} | italic | oblique]
FontColor
FontName
FontSize
FontUnits [inches | centimeters | normalized |
{points} | pixels]
FontWeight [{normal} | bold]
LabelFormat [{compass} | signed | none]
LabelRotation [on | {off}]
LabelUnits [{degrees} | radians]
MeridianLabel [on | {off}]

4-17

4 Creating and Viewing Maps

MLabelLocation
MLabelParallel
MLabelRound
ParallelLabel [on | {off}]
PLabelLocation
PLabelMeridian
PLabelRound

Many, but not all, property choices and defaults can also be displayed
individually:

setm(gca,'AngleUnits')
AngleUnits [{degrees} | radians]
setm(gca,'MapProjection')
An axes's "MapProjection" property does not have a fixed set
of property values.

setm(gca,'Frame')
Frame [on | {off}]
setm(gca,'FixedOrient')
FixedOrient FixedOrient is a read-only property

7 In the same way, getm displays the current value of any axes property:

getm(gca,'AngleUnits')
ans =
degrees

getm(gca,'MapProjection')
ans =
eqdconic

getm(gca,'Frame')
ans =
on

getm(gca,'FixedOrient')
ans =

[]

4-18

Axes for Drawing Maps

For a complete listing and descriptions of map axes properties, see the
reference page for axesm. To identify what properties apply to a given map
projection, see the reference page for that projection.

Using the Map Limit Properties
In many common situations, the map limit properties, MapLatLimit and
MapLonLimit, provide a convenient way of specifying your map projection
origin or frame limits. Note that these properties are intentionally redundant;
you can always avoid them if you wish and instead use the Origin,
FLatLimit, and FLonLimit properties to set up your map. When they’re
applicable, however, you’ll probably find that it’s easier and more intuitive
to set MapLatLimit and MapLonLimit, especially when creating a new map
axes with axesm.

Example 1: Robinson Projection
Often, you’ll want to create a map using a cylindrical projection (such as
Mercator, Miller, or Plate Carée) or a pseudo-cylindrical projection (such as
Mollweide or Robinson) showing all or most of the Earth, with the Equator
running as a straight horizontal line across the center of the map. Your map
will be bounded by a geographic quadrangle, and the projection origin will
be located on the Equator and centered between the longitude limits. In this
case, you can easily control the north-south extent of the quadrangle with
the MapLatLimit property and the east-west extent with the MapLonLimit
property. axesm will automatically set the Origin and assign consistent
values for the frame limits (FLatLimit and FLonLimit).

For example, here’s a way to create a map with a Robinson projection showing
the western Pacific Ocean and surrounding areas:

latlim = [-80 80];
lonlim = [100 -120];
figure('Color','white')
axesm('robinson','MapLatLimit',latlim,'MapLonLimit',lonlim, ...

'Frame','on','Grid','on','MeridianLabel','on', ...
'ParallelLabel','on')

axis off
setm(gca,'MLabelLocation',60)
coast = load('coast.mat');

4-19

4 Creating and Viewing Maps

plotm(coast.lat,coast.long)

Note The western limit (100 degrees E, in this case) must always precede the
eastern limit (-120 degrees E, or 120 degrees W), even if the second number in
the longitude-limit vector is smaller than the first.

Note that the map spans 140 degrees from west to east:

wrapTo360(diff(lonlim))

ans =
140

axesm automatically sets the Origin and frame limits based on the values
you selected for MapLatLim and MapLonLim. You can check the Origin and
frame limits by using getm.

origin = getm(gca,'Origin');
flatlim = getm(gca,'FLatLimit');
flonlim = getm(gca,'FLonLimit');

4-20

Axes for Drawing Maps

The origin longitude should be located halfway between the longitude limits of
100 E and 120 W. Adding half of 140 to the western limit gives 100 + 70 = 170
degrees E. This should, and does, equal the second element of the origin vector:

origin(2)

ans =
170

The frame is centered on this longitude with a half-width of 70 degrees:

flonlim

flonlim =
-70 70

The story with latitudes is somewhat simpler; the origin latitude is on the
Equator:

origin(1)

ans =
0

and therefore the latitude limits of the frame equal the value supplied for
MapLatLimit:

flatlim

flatlim =
-80 80

Of course, after you’ve called axesm, you may look at your map and decide that
you’re not completely satisfied with your initial choice of map limits. Suppose
that you decide it would be better to shift the western longitude limit to 40
degrees E in order to include a little more of Asia. You can do this by calling
setm with a new MapLonLimit value:

setm(gca,'MapLonLimit',[40 -120])

but the asymmetric appearance of the resulting map may surprise you.

4-21

4 Creating and Viewing Maps

You might have expected to see a symmetric map just like the one you would
get if you replaced lonlim in the earlier call to axesm with [40 -120], but
that’s not what happened. This apparent inconsistency turns out to be an
important consequence of the fact that MapLatLimit and MapLonLimit are
redundant properties.

Before you call axesm, none of the map axes properties have been set yet
because the map axes doesn’t exist. Therefore, there’s no value yet for the
Origin property, and there’s no problem in setting the longitude origin
halfway between the longitudes specified in the MapLonLimit vector. But once
axesm has been called, your map axes does have a projection origin. Since the
projection origin is such a fundamental property, it takes precedence over
the MapLonLimit property.

Therefore, if you try to reset your longitude limits without also resetting the
origin, setm will maintain your current origin. So, the center of the map
limits moved west, but the origin stayed fixed. This combination caused the
asymmetry.

4-22

Axes for Drawing Maps

To avoid this asymmetry, you can repeat the operations shown above to figure
out that the new central longitude must be at 140 degrees E and add this
in the call to setm like this:

setm(gca,'MapLonLimit',[40 -120],'Origin',[0 140])

but you don’t actually need to go through such trouble.

Instead, you can just tell setm that you’d like to calculate a new origin by
providing an empty array instead of a new value for the Origin property.

setm(gca,'MapLonLimit',[40 -120],'Origin',[])

Notice the symmetry of the resulting map frame. Usually this is the easiest
thing to do.

Example 2: Cylindrical Projection
Load the “coast” MAT-file.

coast = load('coast');

4-23

4 Creating and Viewing Maps

Construct a Mercator projection covering the full range of permissible
latitudes with longitudes covering a full 360 degrees starting at 60 West.

figure('Color','w')
axesm('mercator','MapLatLimit',[-90 90],'MapLonLimit',[-60 300])
axis off; framem on; gridm on; mlabel on; plabel on;
setm(gca,'MLabelLocation',60)
geoshow(coast.lat,coast.long,'DisplayType','polygon')

The call to axesm above is equivalent to:

axesm('mercator','Origin',[0 120 0], ...
'FLatLimit',[-90 90],'FlonLimit',[-180 180])

You can verify this by checking these properties:

getm(gca,'Origin')
getm(gca,'FLatLimit')
getm(gca,'FLonLimit')

ans =
0 120.00 0

ans =

4-24

Axes for Drawing Maps

-86.00 86.00
ans =

-180.00 180.00

Note that the map and frame limits are clamped to the range of [-86 86]
imposed by the read-only TrimLat property.

getm(gca,'MapLatLimit')
getm(gca,'FLatLimit')
getm(gca,'TrimLat')

ans =
-86.00 86.00

ans =
-86.00 86.00

ans =
-86.00 86.00

Example 3: Conic Projection
Create a map of the standard version of the Lambert Conformal Conic
projection covering latitudes 20 North to 75 North and longitudes covering 90
degrees starting at 30 degrees West.

coast = load('coast');
figure('Color','w')
axesm('lambertstd','MapLatLimit',[20 75],'MapLonLimit',[-30 60])
axis off; framem on; gridm on; mlabel on; plabel on;
geoshow(coast.lat, coast.long, 'DisplayType', 'polygon')

4-25

4 Creating and Viewing Maps

The call to axesm above is equivalent to:

axesm('lambertstd','Origin',[0 15 0],'FLatLimit',[20 75], ...
'FlonLimit',[-45 45])

Example 4: Southern Hemisphere Conic Projection
"Reflect" the preceding map into the Southern Hemisphere. Override the
default standard parallels as well as change MapLatLimit.

coast = load('coast');
figure('Color','w')
axesm('lambertstd','MapParallels',[-75 -15], ...

'MapLatLimit',[-75 -20],'MapLonLimit',[-30 60])
axis off; framem on; gridm on; mlabel on; plabel on;
geoshow(coast.lat,coast.long,'DisplayType','polygon')

4-26

Axes for Drawing Maps

Example 5: North-Polar Azimuthal Projection
Construct a North-polar Equal-Area Azimuthal projection map extending
from the Equator to the pole and centered by default on longitude 0.

coast = load('coast');
figure('Color','w')
axesm('eqaazim','MapLatLimit',[0 90])
axis off; framem on; gridm on; mlabel on; plabel on;
setm(gca,'MLabelParallel',0)
geoshow(coast.lat,coast.long,'DisplayType','polygon')

4-27

4 Creating and Viewing Maps

The call to axesm above is equivalent to:

axesm('eqaazim','MLabelParallel',0,'Origin',[90 0 0], ...
'FLatLimit',[-Inf 90])

Example 6: South-Polar Azimuthal Projection
Create a South-polar Stereographic Azimuthal projection map extending
from the South Pole to 20 degrees S, centered on longitude 150 degrees
West. Include a value for the Origin property in order to control the central
meridian.

coast = load('coast');
figure('Color','w')
axesm('stereo','Origin',[-90 -150],'MapLatLimit',[-90 -20])
axis off; framem on; gridm on; mlabel on; plabel on;
setm(gca,'MLabelParallel',-20)
geoshow(coast.lat,coast.long,'DisplayType','polygon')

4-28

Axes for Drawing Maps

The call to axesm above is equivalent to:

axesm('stereo','Origin',[-90 -150 0],'FLatLimit',[-Inf 70])

Example 7: Equatorial Azimuthal Projection
Create a map of an Equidistant Azimuthal projection with the origin on
the Equator, covering from 10 E to 170 E. The origin longitude falls at the
center of this range (90 E), and the map reaches north and south to within 10
degrees of each pole.

coast = load('coast');
figure('Color','w')
axesm('eqdazim','FLatLimit',[],'MapLonLimit',[10 170])
axis off; framem on; gridm on; mlabel on; plabel on;
setm(gca,'MLabelParallel',0,'PLabelMeridian',60)
geoshow(coast.lat,coast.long,'DisplayType','polygon')

4-29

4 Creating and Viewing Maps

The call to axesm above is equivalent to:

axesm('eqaazim','Origin',[0 90 0],'FLatLimit',[-Inf 80])

Example 8: General Azimuthal Projection
Construct an Orthographic projection map with the origin centered near
Paris. You can’t use MapLatLimit or MapLonLimit in this case.

coast = load('coast');
originLat = dm2degrees([48 48]);
originLon = dm2degrees([2 20]);

figure('Color','w')
axesm('ortho','Origin',[originLat originLon])
axis off; framem on; gridm on; mlabel on; plabel on;
setm(gca,'MLabelParallel',30,'PLabelMeridian',-30)
geoshow(coast.lat,coast.long,'DisplayType','polygon')

4-30

Axes for Drawing Maps

Example 9: Oblique Mercator Projection
Create a map with a long, narrow, oblique Mercator projection showing the
area 10 degrees to either side of the great-circle flight path from Tokyo to New
York. You can’t use MapLatLimit or MapLonLimit in this case, either.

coast = load('coast');
latTokyo = dm2degrees([35 40]);
lonTokyo = dm2degrees([139 45]);

latNewYork = dm2degrees([40 47]);
lonNewYork = dm2degrees([-73 58]);

[dist,az] = distance(latTokyo,lonTokyo,latNewYork,lonNewYork);
[midLat,midLon] = reckon(latTokyo,lonTokyo,dist/2,az);
midAz = azimuth(midLat,midLon,latNewYork,lonNewYork);

buf = [-10 10];

4-31

4 Creating and Viewing Maps

figure('Color','w')
axesm('mercator','Origin',[midLat midLon 90-midAz], ...

'FLatLimit',buf,'FLonLimit',[-dist/2 dist/2] + buf)
axis off; framem on; gridm on; tightmap
geoshow(coast.lat,coast.long,'DisplayType','polygon')
plotm([latTokyo latNewYork],[lonTokyo lonNewYork],'r-')

General Applicability of Map Limit Properties
As the preceding examples illustrate, most typically you use the MapLatLimit
and MapLonLimit properties to set up a map axes with a non-oblique,
non-azimuthal projection, with its origin on the Equator. (Most of the
projections included in the Mapping Toolbox fall into this category; e.g.,
cylindrical, pseudo-cylindrical, conic, or modified azimuthal.) In addition,
even with a non-zero origin latitude (origin off the Equator), you can
use the MapLatLimit and MapLonLimit properties with projections that
are implemented directly rather than via rotations of the sphere (e.g.,
tranmerc, utm, lambertstd, cassinistd, eqaconicstd, eqdconicstd, and
polyconicstd). This list includes the projections used most frequently for
large-scale maps, such as U.S. Geological Survey topographic quadrangle
maps. Finally, when the origin is located at a pole or on the Equator, you can
use the map limit properties with any azimuthal projection (e.g., stereo,
ortho, breusing, eqaazim, eqdazim, gnomonic, or vperspec).

On the other hand, you should avoid the map limit properties, working
instead with the Origin, FLatLimit, and FLonLimit properties, when:

• You want your map frame to be positioned asymmetrically with respect to
the origin longitude.

• You want to use an oblique aspect (that is, assign a non-zero rotation angle
to the third element of the "orientation vector" supplied as the Origin
property value).

4-32

Axes for Drawing Maps

• You want to change your projection’s default aspect (normal vs. transverse).

• You want to to use a nonzero origin latitude, except in one of the special
cases noted above.

• You are using one of the following projections:

- globe— No need for map limits; always covers entire planet

- cassini — Always in a transverse aspect

- wetch — Always in a transverse aspect

- bries — Always in an oblique aspect

There’s no need to supply a value for the MapLatLimit property if you’ve
already supplied one for the Origin and FLatLimit properties. In fact, if
you supply all three when calling either axesm or setm, the FLatLimit value
will be ignored. Likewise, if you supply values for Origin, FLonLimit, and
MapLonLimit, the FLonLimit value will be ignored.

If you do supply a value for either MapLatLimit or MapLonLimit in one of the
situations listed above, axesm or setm will ignore it and issue a warning.
For example,

axesm('lambert','Origin',[40 0],'MapLatLimit',[20 70])

generates the warning message:

Ignoring value of MapLatLimit due to use of nonzero origin
latitude with the lambert projection.

Using the Map Limit Properties with setm
As shown in the earlier example in which the longitude limits of a map in
the Robinson projection are changed via setm, it’s important to understand
that MapLatLimit and MapLonLimit are extra, redundant properties that are
coupled to the Origin, FLatLimit, and FLonLimit properties. On the other
hand, it’s not too difficult to know how to update your map axes if you keep
in mind the following:

4-33

4 Creating and Viewing Maps

• The Origin property takes precedence. It is set (implicitly, if not explicitly)
every time you call axesm and you cannot change it just by changing the
map limits. (Note that when creating a new map axes from scratch, the
map limits are used to help set the origin if it is not explicitly specified.)

• MapLatLimit takes precedence over FLatLimit if both are provided in the
same call to axesm or setm, but changing either one alone affects the other.

• MapLonLimit and FLonLimit have a similar relationship.

As shown in the example, the precedence of Origin means that if you want to
reset your map limits with setm and have setm also determine a new origin,
you must set Origin to [] in the same call. For example,

setm(gca,'Origin',[],'MapLatLimit',newMapLatlim,...
'MapLonLimit',newMapLonlim)

On the other hand, a call like this will automatically update the values of
FLatLimit and FLonLimit. Similarly, a call like:

setm(gca,'FLatLimit',newFrameLatlim,'FLonLimit',newFrameLonlim)

will update the values of MapLatLimit and MapLonLimit.

Finally, you probably don’t want to try the following:

setm(gca,'Origin',[],'FLonLimit',newFrameLonlim)

because the value of FLonLimit (unlike MapLonLimit) will not affect Origin,
which will merely change to a projection-dependent default value (typically
[0 0 0]).

Switching Between Projections
Once a map axes object has been created with axesm, whether map data is
displayed or not, it is possible to change the current projection as well as many
of its parameters. You can use setm or the maptool UI to reset the projection.
The rest of this section describes the considerations and parameters involved
in switching projections in a map axes. Additional details are given for doing
this with the geoshow function in “Changing Map Projections when Using
geoshow” on page 4-42.

4-34

Axes for Drawing Maps

When you switch from one projection to another, setm clears out settings that
were specific to the earlier projection, updates the map frame and graticule,
and generally keeps the map covering the same part of the world—even when
switching between azimuthal and non-azimuthal projections. But in some
cases, you might need to further adjust the map axes properties to achieve
proper appearance. Settings that are suitable for one projection might not be
appropriate for another. Most often, you’ll need to update the positioning of
your meridian and parallel labels.

Moving Meridian and Parallel Labels

1 Create a Mercator projection with meridian and parallel labels.

axesm mercator
framem on; gridm on; mlabel on; plabel on
setm(gca,'LabelFormat','signed')
axis off

 −180° −150° −120° − 90° − 60° − 30° 0° + 30° + 60° + 90° +120° +150° +180°

 −75°

 −60°
 −45°
 −30°
 −15°

 0°
 +15°
 +30°
 +45°
 +60°

 +75°

4-35

4 Creating and Viewing Maps

2 Get the default map and frame latitude limits for the Mercator projection.

[getm(gca,'MapLatLimit'); getm(gca,'FLatLimit')]
ans =
-86 86
-86 86

Both the frame and map latitude limits are set to 86º north and south for
the Mercator projection to maintain a safe distance from the singularity
at the poles.

3 Now switch the projection to an orthographic azimuthal.

setm(gca,'MapProjection','ortho')

4 Manually specify new locations for the meridian and parallel labels. (See
“Labeling Grids” on page 4-58.)

setm(gca,'MLabelParallel',0,'PLabelMeridian',-90, ...
'PLabelMeridian',-30)

4-36

Axes for Drawing Maps

 − 90° − 60° − 30° 0° + 30° + 60° + 90°

 −90° −75°
 −60°

 −45°

 −30°

 −15°

 0°

 +15°

 +30°

 +45°

 +60°
 +75° +90°

Resetting Frame Limits
When switching from one projection to another, you may need to reset your
origin and frame limits, especially if you are mapping a small portion of the
Earth.

1 Construct an empty map axes for a region of the U.S. in the Lambert
Conformal Conic projection (the default projection for usamap).

latlim = [32 42];
lonlim = [-125 -111];
h = usamap(latlim, lonlim);

2 Read in the 'usastatehi' shapefile and return a subset of the shapefile
contents, as defined by the latitude and longitude limits, in a structure
called states.

4-37

4 Creating and Viewing Maps

states = shaperead('usastatehi', 'UseGeoCoords', true, ...
'BoundingBox', [lonlim', latlim']);

3 Save the latitude and longitude data from the structure in the vectors
lat and lon.

lat = [states.Lat];
lon = [states.Lon];

4 Project patch objects on the map axes.

patchm(lat, lon, [0.5 0.5 1])

5 Change the projection to Lambert Equal Area Azimuthal and reset the
origin and frame limits.

setm(gca,'MapProjection','eqaazim','Origin',[37 -118], ...
'FLatLimit',[-Inf 6])

setm(gca,'mlinelocation',2,'plinelocation',2)
tightmap

4-38

Axes for Drawing Maps

Projected and Unprojected Graphic Objects
Many Mapping Toolbox cartographic functions project features on a map
axes based on their designated latitude-longitude positions. The latitudes
and longitudes are mathematically transformed to x and y positions using
the formulas for the current map projection. If the map projection or its
parameters change, objects on a map axes can be automatically reprojected
to update the map display accordingly, but only under the circumstances
detailed in the following sections.

Auto-Reprojection of Mapped Objects and Its Limitations
Using the setm function, you can change the current map projection on the fly
if the map display was created in a way that permits reprojection. Note that
map displays can contain objects that cannot be reprojected, and may need
to be explicitly deleted and redrawn. Automatic reprojection will take place
when you use setm to modify the MapProjection property, or any other map
axes property from the following list:

• AngleUnits

• Aspect

• FalseEasting

4-39

4 Creating and Viewing Maps

• FalseNorthing

• FLatLimit

• FLonLimit

• Geoid

• MapLatLimit

• MapLonLimit

• MapParallels

• Origin

• ScaleFactor

• TrimLat

• TrimLon

• Zone

Auto-reprojection takes place for objects created with any of the following
Mapping Toolbox functions:

• contourm

• contour3m

• fillm

• fill3m

• gridm

• linem

• meshm

• patchm

• plotm

• plot3m

• surfm

• surfacem

4-40

Axes for Drawing Maps

• textm

In general, objects created with geoshow or with a combination of calls to
mfwdtran followed by ordinary MATLAB graphics functions, such as line,
patch, or surface, are not automatically reprojected. You should delete such
objects whenever you change one or more of the map axes properties listed
above, and then redisplay them.

The above Mapping Toolbox functions are analogous to standard MATLAB
graphics functions having the same name, less the trailing m. You can use
both types of functions to plot data on a map axes, as long as you are aware
that the standard MATLAB graphics functions do not apply map projection
transformations, and therefore require you to specify positions in map x-y
space.

If you have preprojected vector or raster map data or read such data from files,
you can display it with mapshow, mapview, or standard MATLAB graphics
functions, such as plot or mesh. If its projection is known and is included
in the Mapping Toolbox projection libraries, you can use its parameters to
project geodata in geographic coordinates to display it in the same axes.

There are four common use cases for changing a map projection in a map axes
with setm or for reprojecting map data plotted on a regular MATLAB axes:

Mapping Use Case Type of
Axes

Reprojection Behavior

Plot geographic
(latitude-longitude) vector
coordinate data or data grid
using a Mapping Toolbox
function from releases prior
to Version 2 (e.g., plotm)

Map axes Automatic reprojection

Plot geographic vector data
with geoshow

Map axes No automatic reprojection;
delete graphics objects prior
to changing the projection and
redraw them afterwards.

4-41

4 Creating and Viewing Maps

Mapping Use Case Type of
Axes

Reprojection Behavior

Plot data grids, images, and
contours with geographic
coordinates with geoshow

Map axes Automatic reprojection; this
behavior could change in a
future release

Plot projected (x-y) vector
or raster map data with
mapshow or with a MATLAB
graphics function (e.g., line,
contour, or surf)

Regular
axes

Manual reprojection
(reproject coordinates with
minvtran /mfwdtran or
projinv/projfwd); delete
graphics objects prior to
changing the projection and
redraw them afterwards.

You can use handlem to help identify which objects to delete when manual
deletion is necessary. See “Determining and Manipulating Object Names”
on page 4-84 for an example of its use. The following section describes
reprojection behavior in more detail and illustrates some of these cases.

Changing Map Projections when Using geoshow
You can display latitude-longitude vector and raster geodata using the
geoshow function (use mapshow to display preprojected coordinates and grids).
When you use geoshow to display maps on a map axes, the data are projected
according to the map projection assigned when axesm, worldmap, or usamap
created the map axes (e.g., axesm('mapprojection','mercator')).

You can also use geoshow to display latitude-longitude data on a regular
axes (created by the axes function, for example). When you do this, the
latitude-longitude data are displayed using a Plate CarrØe Projection,
which linearly maps longitude to x and latitude to y.

If you are using geoshow with a map axes and want to change the map
projection after you have displayed data in geographic coordinates, do the
following, depending on whether the data are raster or vector:

Raster Data. Change the projection using setm. For example,

load geoid
figure; axesm mercator
geoshow(geoid,geoidrefvec,'DisplayType','texturemap')

4-42

Axes for Drawing Maps

setm(gca,'mapprojection','mollweid')

Vector Data. Obtain handles to the line or patch graphic objects, delete
the objects from the axes, change the projection using setm, and replot the
vector data using geoshow:

figure; axesm miller
h = geoshow('landareas.shp')

4-43

4 Creating and Viewing Maps

delete(h)
setm(gca,'mapprojection','ortho')
geoshow('landareas.shp')

4-44

Axes for Drawing Maps

In the above example, h is a handle to an hggroup object, which geoshow
constructs when plotting point, line, and polygon data.

If you need to change projections when displaying both raster and vector
geodata, you can combine these techniques; removing the vector graphic
objects does not affect raster data already displayed.

Placing Geographic and Nongeographic Objects in a Map Axes
Here is an example of how the two types of functions can interact when you
place text objects:

1 Make a Miller map axes with a latitude-longitude grid:

axesm miller; framem on; gridm on; mlabel on; plabel on;
showaxes; grid off;

These function calls create a map axes object, a map frame enclosing
the region of interest, and geographic grid lines. The x-y axes, which
are normally hidden, are displayed, and the axes x-y grid is turned off.
The Mapping Toolbox function gridm constructs lines to illustrate the
latitude-longitude grid, unlike the MATLAB function grid, which draws
an x-y grid for the underlying projected map coordinates. Depending on
the type of projection, a latitiude-longitude grid (or graticule) can contain
curves while a MATLAB grid never does. For more information about
graticules, see “The Map Grid” on page 4-55.

2 Now place a standard MATLAB text object and a mapped text object, using
the two separate coordinate systems:

text(-2,-1,'Standard text object at x = -2, y = -1')
textm(70,-150,'Mapped text object at lat = 70, lon = -150')

In the figure, shown below, a standard text object is placed at x=-2 and
y=-1, while a mapped text object is placed at (70ºN,150ºW) in the Miller
projection.

4-45

4 Creating and Viewing Maps

3 Now change the projection to sinusoidal. The standard text object remains
at the same Cartesian position, which alters its latitude-longitude position.
The mapped text object remains at the same geographic location, so its
x-y position is altered. Also, the frame and grid lines reflect the new map
projection:

setm(gca,'MapProjection','sinusoid')
showaxes; grid off; mlabel off

4-46

Axes for Drawing Maps

Similarly, vector and matrix data can be displayed using either mapping or
standard functions (e.g., plot/plotm, surf/surfm). See “Displaying Vector
Data with Mapping Toolbox Functions” on page 4-60 for information on
plotting vector geodata, and “Displaying Data Grids” on page 4-70 for
information on plotting raster geodata.

4-47

4 Creating and Viewing Maps

Controlling Map Frames and Grids

In this section...

“The Map Frame” on page 4-48

“The Map Grid” on page 4-55

The Map Frame
The Mapping Toolbox map frame is the outline of the limits of a map, often in
the form of a box, the “edge of the world,” so to speak. The frame is displayed
if the map axes property Frame is set to 'on'. This can be accomplished upon
map axes creation with axesm, or later with setm, or with the direct command
framem on. The frame is geographically defined as a latitude-longitude
quadrangle that is projected appropriately. For example, on a map of the
world, the frame might extend from pole to pole and a full 360º range of
longitude. In appearance, the frame would take on the characteristic shape of
the projection. The examples below are full-world frames shown in four very
different projections.

���������
����������

�����������
����������

����������	����������
����������

��������
����������

Full-World Map Frames

As a map object, each of the previously displayed frames is identical; however,
the selection of a display projection has varied their appearance. Because
each of the examples shows the entire world, FLatLimit is [-90 90], and

4-48

Controlling Map Frames and Grids

FLonLimit is [-180 180] for each case. The frame quadrangle can encompass
smaller regions, as well, in which case the shape is a section of a full-world
outline or simply a quadrilateral with straight or curving sides. Execute this
code to produce the figure that follows:

4-49

4 Creating and Viewing Maps

% Plot four regions of Robinson frame and grid using map limits
%
figure('color','white')
% Default map frame
subplot(2,2,1);
axesm('MapProjection','robinson',...

'Frame','on','Grid','on')
title('Latitude [-90 90], Map lons [-180 180]','FontSize',10)
%
subplot(2,2,2);
axesm('MapProjection','robinson',...

'MapLatLimit',[30 70],'MapLonLimit',[-90 90],...
'Frame','on','Grid','on')

title('Latitude [30 70], Longitude [-90 90]','FontSize',10)
%
subplot(2,2,3);
axesm('MapProjection','robinson',...

'MapLatLimit',[-90 0],'MapLonLimit',[-180 -30],....
'Frame','on','Grid','on')

title('Latitude [-90 0], Longitude [-180 -30]','FontSize',10)
%
subplot(2,2,4);
axesm('MapProjection','robinson',...

'MapLatLimit',[-70 -30],'MapLonLimit',[60 150],...
'Frame','on','Grid','on')

title('Latitude [-70 -30], Longitude [60 150]','FontSize',10)

4-50

Controlling Map Frames and Grids

Latitude [−90 90], Map lons [−180 180] Latitude [30 70], Longitude [−90 90]

Latitude [−90 0], Longitude [−180 −30] Latitude [−70 −30], Longitude [60 150]

Frame Quadrangles in the Robinson Projection (Symmetric About Prime
Meridian)

For the frames shown above, the projection is centered on the prime meridian,
or 0 longitude. Such a frame would be the result of creating a map axes with
the defaults for the Robinson projection and then resetting the frame limits to
cover just part of the world.

When you want your frame to be symmetric about the region of interest, let
axesm determine the proper settings for you. If you specify the map limits
without specifying the map origin and frame limits, axesm will automatically
set the appropriate values for a proper symmetric frame.

4-51

4 Creating and Viewing Maps

In the following example, the axes limits are set using setm after the Robinson
map axes is created. Note that map axes properties that concern frames begin
with “F”:

% Same regions as above, but with frame limits
% altered after projecting
%
figure('color','white')
% Default frame limits
h11 = subplot(2,2,1);
axesm('MapProjection','robinson',...

'Frame','on','Grid','on')
title('Latitude [-90 90], Longitude [-180 180]')
%
h12 = subplot(2,2,2);
axesm('MapProjection','robinson',...

'Frame','on','Grid','on')
setm(h12,'FLatLimit',[30 70],'FLonLimit',[-90 90])
title('Latitude [30 70], Longitude [-90 90]')
%
h21 = subplot(2,2,3);
axesm('MapProjection','robinson',...

'Frame','on','Grid','on')
setm(h21,'FLatLimit',[-90 0],'FLonLimit',[-180 -30])
title('Latitude [-90 0], Longitude [-180 -30]')
%
h22 = subplot(2,2,4);
axesm('MapProjection','robinson',...

'Frame','on','Grid','on')
setm(h22,'FLatLimit',[-70 -30],'FLonLimit',[60 150])
title('Latitude [-70 -30], Longitude [60 150]')

4-52

Controlling Map Frames and Grids

Latitude [−90 90], Longitude [−180 180] Latitude [30 70], Longitude [−90 90]

Latitude [−90 0], Longitude [−180 −30] Latitude [−70 −30], Longitude [60 150]

Frame Quadrangles in the Robinson Projection (Symmetric About Map Limits)

The differences between the two examples are obvious when projections are
not centered on the prime meridian. If you wanted to create a symmetric
frame in the lower right subplot of the above figure, reset the map limits
instead of the frame limits, but be sure to reset the 'Origin' property in
the same call:

setm(h22,'MapLonLimit',[60 150],'Origin',[])

You can manipulate properties beyond the latitude and longitude limits of
the frame. Frame properties are established upon map axes object creation;
you can modify them subsequently with the setm and the framem functions.
The command framem alone is a toggle for the Frame property, which controls

4-53

4 Creating and Viewing Maps

the visibility of the frame. You can also call framem with property names and
values to alter the appearance of the frame:

framem('FlineWidth',4,'FEdgeColor','red')

The frame is actually a patch with a default face color set to 'none' and
a default edge color of black. You can alter these map axes properties by
manipulating the FFaceColor and FEdgeColor properties. For example, the
command

setm(gca,'FFaceColor','cyan')

makes the background region of your display resemble water. Since the frame
patch is always the lowest layer of a map display, other patches, perhaps
representing land, will appear above the “water.” If an object is subsequently
plotted “below” the frame patch, the frame altitude can be recalculated to lie
below this object with the command framem reset. The frame is replaced
and not reprojected.

Set the line width of the edge, which is 2 points by default, using the
FLineWidth property.

The primary advantage of displaying the map frame is that it can provide
positional context for other displayed map objects. For example, when vector
data of the coasts is displayed, the frame provides the “edge” of the world.

See the framem reference page for more details.

Map and Frame Limits
The Mapping Toolbox map and frame limits are two related map axes
properties that limit the map display to a defined region. The map latitude
and longitude limits define the extents of geodata to be displayed, while the
frame limits control how the frame fits around the displayed data. Any object
that extends outside the frame limits is automatically trimmed.

The frame limits are also specified differently from the map limits. The map
limits are in absolute geographic coordinates referenced to an origin at the
intersection of the prime meridian and the equator, while the frame limits are
referenced to the rotated coordinate system defined by the map axes origin.

4-54

Controlling Map Frames and Grids

For all nonazimuthal projections, frame limits are specified as quadrangles
([latmin latmax] and [longmin longmax]) in the frame coordinate system.
In the case of azimuthal projections, the frames are circular and are described
by a polar coordinate system. One of the frame latitude limits must be a
negative infinity (-Inf) to indicate an azimuthal frame (think of this as
the center of the circle), while the other limit determines the radius of the
circular frame (rlatmax). The longitude limits of azimuthal frames are
inconsequential, since a full circle is always displayed.

If you are uncertain about the correct format for a particular projection frame
limit, you can reset the formats to the default values using empty matrices.

Note For nonazimuthal projections in the normal aspect, the map extent is
limited by the minimum of the map limits and the frame limits; hence, the
two limits will coincide after evaluation. Therefore, if you manually change
one set of limits, you might want to clear the other set to get consistent limits.

The Map Grid
The map grid is the set of displayed meridians and parallels, also known as
a graticule. Display the grid by setting the map axes property Grid to 'on'.
You can do this when you create map axes with axesm, with setm, or with the
direct command gridm on.

Grid Spacing
To control display of meridians and parallels, set a scalar meridian spacing or
a vector of desired meridians in the MLineLocation property. The property
PLineLocation serves a corresponding purpose for parallels. The default
values place grid lines every 30º for meridians and every 15º for parallels.

4-55

4 Creating and Viewing Maps

Grid Layering
By default, the grid is placed as the top layer of any display. You can alter
this by changing the GAltitude property, so that other map objects can be
placed “above” the grid. The new grid is drawn at its new altitude. The units
used for GAltitude are specified with the daspectm function.

To reposition the grid back to the top of the display, use the command gridm
reset. You can also control the appearance of grid lines with the GLineStyle
and GLineWidth properties, which are ':' and 0.5, respectively, by default.

Limiting Grid Lines
The Miller projection is an example in which all the meridians can extend to
the poles without appearing to be cluttered. In other projections, such as
the orthographic (below), the map grid can obscure the surface where they

4-56

Controlling Map Frames and Grids

converge. Two map axes properties, MLineLimit and MLineException, enable
you to control such clutter:

• Use the MLineLimit property to specify a pair of latitudes at which to
terminate the meridians. For example, setting MLineLimit to [-75
75] completely clears the region above and below this latitude range of
meridian lines.

• If you want some lines to reach the poles but not others, you can specify
them with the MLineException property. For example, if MLineException
is set to [-90 0 90 180], then the meridians corresponding to the four
cardinal longitudes will continue past the limit on to the pole.

The use of these properties is illustrated in the figure below. Note that there
are two corresponding map axes properties, PLineLimit and PLineException,
for controlling the extent of displayed parallels.

4-57

4 Creating and Viewing Maps

�
��	�������������������������!
�
�
�����������
��
�������%
����
�3

4%
�����
��!���������
���	���
�
�
��������������
�������	�
�3

4%
�����
��!��������������
���
�
������
�������
�����������
��
�����
�%
����
�5��
�����
��������������
3

���������������
��������
�������
������������ !� !�� "����
���#��$��������%����������&'

���������������
��������
�������
������������ !� !�� "����
���#��$��������%��������������
�����������
����()*�)*"&'

���������������
��������
�������
������������ !� !�� "����
���#��$��������%��������������
�����������
����()*�)*"����
������������
������(+!�!�+!��,!"&'

Labeling Grids
You can label displayed parallels and meridians. MeridianLabel and
ParallelLabel are on-off properties for displaying labels on the meridians
and parallels, respectively. They are both 'off' by default. Initially, the label
locations coincide with the default displayed grid lines, but you can alter this
by using the PlabelLocation and MlabelLocation properties. These grid
lines are labeled across the north edge of the map for meridians and along the
west edge of the map for parallels. However, the property MlabelParallel
allows you to specify 'north', 'south', 'equator', or a specific latitude at
which to display the meridian labels, and PlabelMeridian allows the choice
of 'west', 'east', 'prime', or a specific longitude for the parallel labels.
By default, parallel labels are displayed in the range of 0° to 90° north and
south of the equator while meridian labels are displayed in the range of 0° to

4-58

Controlling Map Frames and Grids

180° east and west of the prime meridian. You can use the mlabelzero22pi
function to redisplay the meridian labels in the range of 0° to 360° east of
the prime meridian.

Properties affecting grid labeling are listed below.

Property Effect

MeridianLabel Toggle display of meridian labels

ParallelLabel Toggle display of parallel labels

MlabelLocation Alternate interval for labeling meridians

PlabelLocation Alternate interval for labeling parallels

MlabelParallel Keyword or latitude for placing meridian
labels

PlabelMeridian Keyword or longitude for placing parallel
labels

mlabelzero22pi(function) Relabel meridians with positive angle from
0° to 360°

For complete descriptions of all map axes properties, refer to the axesm
reference page.

4-59

4 Creating and Viewing Maps

Displaying Vector Data with Mapping Toolbox Functions

In this section...

“Programming and Scripting Map Construction” on page 4-60

“Displaying Vector Data as Points and Lines” on page 4-60

“Displaying Vector Maps as Lines or Patches” on page 4-63

Programming and Scripting Map Construction
Although mapview, maptool, and other Mapping Toolbox GUIs are convenient
and quick tools for making maps, most mapping applications require
additional effort. By using and combining Mapping Toolbox and MATLAB
functions, you can create and customize more elaborate maps interactively
by entering commands in the Command Window or by writing MATLAB
code in functions and scripts. This section describes how to use the principal
mapping functions for displaying vector geospatial data. The following section
describes displaying raster map data.

Displaying Vector Data as Points and Lines
Mapping Toolbox vector map display of line objects works much like
MATLAB line display functions. Mapping Toolbox line graphics functions
have MATLAB analogs, the names of which can usually be determined by
appending an m to the MATLAB function name. For instance, the Mapping
Toolbox version of plot is plotm. The main difference between the two classes
of functions comes from the need for Mapping Toolbox functions to work with
geographic coordinates and map projections.

The following table lists the available Mapping Toolbox line display functions.

Function Used For

contourm Contour plot of map data

contour3m Contour plot of map data in 3-D space

geoshow High-level function to plot points, lines, patches, grids,
and georeferenced images in geocoordinates

4-60

Displaying Vector Data with Mapping Toolbox™ Functions

Function Used For

linem Draws line objects projected on map axes

mapshow High-level function to plot points, lines, patches, grids,
and georeferenced images in plane coordinates

plotm Clears figure and draws line objects projected on map
axes

plot3m Projects lines on map axes in 3-D space

The following exercise shows how some of these functions work:

1 Set up a map axes and frame:

load coast
axesm mollweid
framem('FEdgeColor','blue','FLineWidth',0.5)

2 Plot the coast vector data using plotm. Just as with plot, you can specify
line property names and values in the command.

plotm(lat,long,'LineWidth',1,'Color','blue')

Sometimes vector data represents specific points. Suppose you have
variables representing the locations of Cairo (30ºN,32ºE), Rio de Janeiro
(23ºS,43ºW), and Perth (32ºS,116ºE), and you want to plot them as markers
only, without connecting line segments.

3 Define the three city geographic locations and plot symbols at them:

citylats = [30 -23 -32]; citylongs = [32 -43 116];
plotm(citylats,citylongs,'r*')

4-61

4 Creating and Viewing Maps

4 In addition to these sorts of “permanent” geographic data, you can also
display calculated vector data. Calculate and plot a great circle track from
Cairo to Rio de Janeiro, and a rhumb line track from Cairo to Perth:

[gclat,gclong] = track2('gc',citylats(1),citylongs(1),...
citylats(2),citylongs(2));

[rhlat,rhlong] = track2('rh',citylats(1),citylongs(1),...
citylats(3),citylongs(3));

plotm(gclat,gclong,'m-'); plotm(rhlat,rhlong,'m-')

4-62

Displaying Vector Data with Mapping Toolbox™ Functions

Note You can also use geoshow (for data in geographic coordinates) or
mapshow (for data in projected coordinates) to create such maps, either in
a map axes or in a regular axes. Both functions accept either vectors of
coordinates or geographic data structures as input data.

For more information, see “Mapping Toolbox Geographic Data Structures” on
page 2-21, which includes examples of creating geostructs and displaying their
contents in “How to Construct Geographic Data Structures” on page 2-25.

Displaying Vector Maps as Lines or Patches
Vector map data that is properly formatted (i.e., as closed polygons) can be
displayed as patches, or filled-in polygons. In addition, it and other vector
data can be displayed as lines.

Note The Mapping Toolbox patch display functions differ from their MATLAB
equivalents by allowing you to display patch vector data that uses NaNs to
separate closed regions.

Vector map data for lines or polygons can be represented by simple coordinate
arrays, geostructs, or mapstructs. This example illustrates the use of
coordinate arrays for both line and polygon features as well as a geostruct
containing line features.

1 The conus (conterminous U.S.) MAT-file nicely illustrates how polygon
data is structured, manipulated, and displayed. Use who to see what it
contains before loading it.

who -file conus.mat

Your variables are:
description gtlakelon statelat uslat
gtlakelat source statelon uslon

load conus

4-63

4 Creating and Viewing Maps

The variables uslat and uslon together describe three polygons (separated
by NaNs), the largest of which represents the outline of the conterminous
United States. The two smaller polygons represent Long Island, NY, and
Martha’s Vineyard, an island off Massachusetts. The variables gtlakelat
and gtlakelon describe three polygons (separated by NaNs) for the Great
Lakes. The variables statelat and statelon contain line-segment data
(separated by NaNs) for the borders between states, which is not formatted
for patch display.

2 Verify that line and polygon data contains NaNs (hence multiple objects) by
typing a command similar to find(isnan(vector)):

find(isnan(gtlakelon)) %or gtlakelat
ans =

883
1058
1229

The find command returns three values indicating that the gtlakelon
(or gtlakelat) geographic coordinate arrays contain three polygons
representing one or a group of Great Lakes.

3 Read the worldrivers shapefile for the region that covers the conterminous
United States. This data, stored as a geographic data structure, is useful
for illustrating lines.

uslatlim = [min(uslat) max(uslat)]
uslatlim =

25.1200 49.3800

uslonlim = [min(uslon) max(uslon)]
uslonlim =

-124.7200 -66.9700

rivers = shaperead('worldrivers', 'UseGeoCoords', true, ...
'BoundingBox', [uslonlim', uslatlim'])

rivers =

4-64

Displaying Vector Data with Mapping Toolbox™ Functions

23x1 struct array with fields:
Geometry
BoundingBox
Lon
Lat
Name

4 The struct rivers is a geographic data structure having five fields. Note
that the Geometry field specifies whether the data is stored as a 'Point',
'MultiPoint', 'Line', or a 'Polygon’:

rivers(1).Geometry

ans =
Line

For further details on Mapping Toolbox geographic data structures, see
“Understanding Vector Geodata” on page 2-13 and “Understanding Raster
Geodata” on page 2-38.

5 Now you can set up a map axes to display the state coordinates. As conic
projections are appropriate for mapping the entire United States, create a
map axes object using an Albers equal-area conic projection ('eqaconic').
Specifying map limits that contain the region of interest automatically
centers the projection on an appropriate longitude; the frame encloses just
the mapping area, not the entire globe. As a general rule, you should
specify map limits that extend slightly outside your area of interest
(worldmap and usamap do this for you).

Note Conic projections need two standard parallels (latitudes at which
scale distortion is zero). A good rule is to set the standard parallels at
one-sixth of the way from both latitude extremes. Or, to use default
latitudes for the standard parallels, simply provide an empty matrix in
the call to axesm.

The three options that follow demonstrate how you can set map latitude
and longitude limits to axesm:

4-65

4 Creating and Viewing Maps

a Obtain default latitudes by providing an empty matrix as the standard
parallels:

figure
axesm('MapProjection','eqaconic', 'MapParallels',[],...

'MapLatLimit',[23 52], 'MapLonLimit',[-130 -62])

b If you do not know what latitude and longitude limits are appropriate
for your map, as a starting point you could use the exact ones that the
geostruct contains. Using them eliminates white space around the map:

axesm('MapProjection','eqaconic', 'MapParallels',[],...
'MapLatLimit',uslatlim, 'MapLonLimit',uslonlim)

c If you want to add white space around the map, you can do so as follows
(here, 2 degrees are added):

axesm('MapProjection', 'eqaconic', 'MapParallels', [], ...
'MapLatLimit', uslatlim + [-2 2], ...
'MapLonLimit', uslonlim + [-2 2])

6 Turn on the map frame, the map grid, and the meridian and parallel labels:

axis off; framem; gridm; mlabel; plabel

The empty map looks like this.

7 When geographic data is displayed, some layers can hide others. You can
control the visibility of your map layers by varying the order in which you

4-66

Displaying Vector Data with Mapping Toolbox™ Functions

display them. For example, some U.S. state boundaries follow major rivers,
so display the rivers last to avoid obscuring the rivers with the boundaries.

The coordinate array pairs (uslat, uslon), (gtlakelat, gtlakelon), and
(statelat, statelon) simply contain sequences of NaN-separated map
segments, and their geometric interpretation is ambiguous. In order to
display them appropriately as either patches or lines with geoshow, you
need to use the DisplayType parameter. In contrast, DisplayType is not
needed when you map data from a geostruct like rivers.

a Plot a patch to display the area occupied by the conterminous United
States; use the geoshow function with a 'polygon' DisplayType:

geoshow(uslat,uslon, 'DisplayType','polygon','FaceColor',...
[1 .5 .3], 'EdgeColor','none')

b Plot the Great Lakes on top of the land area, using geoshow again:

geoshow(gtlakelat,gtlakelon, 'DisplayType','polygon',...
'FaceColor','cyan', 'EdgeColor','none')

c Plot the line segment data showing state boundaries, using geoshow
with a 'line' DisplayType:

geoshow(statelat,statelon,'DisplayType','line','Color','k')

d Finally, use geoshow to plot the river network. Note that you can omit
DisplayType:

geoshow(rivers, 'Color', 'blue')

4-67

4 Creating and Viewing Maps

Summary of Polygon Mapping Functions
The following table lists the available Mapping Toolbox patch polygon display
functions.

Function Used For

fillm Filled 2-D map polygons

fill3m Filled 3-D map polygons in 3-D space

geoshow Display map latitude and longitude data in 2-D

mapshow Display map data without projection in 2-D

patchm Patch objects projected on map axes

patchesm Patches projected as individual objects on map axes

The fillm function makes use of the low-level function patchm. The toolbox
provides another patch drawing function called patchesm. The optimal use of
either depends on the application and user preferences. The patchm function
creates one displayed object and returns one handle for a patch, which can
contain multiple faces that do not necessarily connect. Mapping Toolbox data
arrays contain NaNs to separate unconnected patch faces, unlike MATLAB
patch display functions, which cannot handle NaN-delimited data for patches.
The patchesm function, on the other hand, treats each face as a separate
object and returns an array containing a handle for each patch. In general,
patchm requires more memory but is faster than patchesm. The patchesm

4-68

Displaying Vector Data with Mapping Toolbox™ Functions

function is useful if you need to manipulate the appearance of individual
patches (as thematic maps often require).

The geoshow and mapshow functions provide a superset of functionality
for displaying unprojected and projected geodata, respectively, in two
dimensions. These functions accept geographic data structures (geostructs
and mapstructs) and coordinate vector arrays, but can also directly read
shapefiles and geolocated raster files. With them, you can map polygon data,
controlling rendering by constructing symbolspecs, data structures that you
can construct with the makesymbolspec function. You can easily construct
symbolspecs for point and line data as well as polygon data to control its
display in geoshow, mapshow, and mapview.

Reprojectability of Maps with Vector Data. If you want to be able to
change the projection of a map on the fly, you should not use geoshow. Some
display functions, such as patchm , fillm, displaym, and linem, enable you to
reproject vector map data, but geoshow does not. That is, when you change a
map axes projection, with setm for example, vector map symbology that was
created with geoshow will not be transformed. Gridded data rendered with
geoshow (when DisplayType is surface, texturemap, or contour), however,
can be reprojected.

4-69

4 Creating and Viewing Maps

Displaying Data Grids

In this section...

“Types of Data Grids and Raster Display Functions” on page 4-70

“Fitting Gridded Data to the Graticule” on page 4-71

“Using Raster Data to Create 3-D Displays” on page 4-74

Types of Data Grids and Raster Display Functions
Mapping Toolbox functions and GUIs display both regular and geolocated
data grids originating in a variety of formats. Recall that regular data grids
require a referencing vector or matrix that describes the sampling and location
of the data points, while geolocated data grids require matrices of latitude
and longitude coordinates.

The data grid display functions are geographic analogies to the MATLAB
surface drawing functions, but operate specifically on map axes objects. Like
the line-plotting functions discussed in the previous chapter, some Mapping
Toolbox grid function names correspond to their MATLAB counterparts with
an m appended.

Note Mapping Toolbox functions beginning with mesh are used for regular
data grids, while those beginning with surf are reserved for geolocated data
grids. This usage differs from the MATLAB definition; mesh plots are used for
colored wire-frame views of the surface, while surf displays colored faceted
surfaces.

Surface map objects can be displayed in a variety of different ways. You can
assign colors from the figure colormap to surfaces according to the values
of their data. You can also display images where the matrix data consists
of indices into a colormap or display the matrix as a three-dimensional
surface, with the z-coordinates given by the map matrix. You can use
monochrome surfaces that reflect a pseudo-light source, thereby producing a
three-dimensional, shaded relief model of the surface. Finally, you can use a
combination of color and light shading to create a lighted shaded relief map.

4-70

Displaying Data Grids

The following table lists the available Mapping Toolbox surface map display
functions.

Function Used For

geoshow Display map data gridded in latitude and longitude in 2-D

mapshow Display gridded map data without projection in 2-D

meshm Regular data grid warped to projected graticule mesh

surfm Geolocated data grid projected on map axes

pcolorm Projected data grid in z = 0 plane

surfacem Data grid warped to projected graticule mesh

surflm 3-D shaded surface with lighting projected on map axes

meshlsrm 3-D lighted shaded relief of regular data grid

surflsrm 3-D lighted shaded relief of geolocated data grid

Fitting Gridded Data to the Graticule
The toolbox projects surface objects in a manner similar to the traditional
methods of mapmaking. A cartographer first lays out a grid of meridians and
parallels called the graticule. Each graticule cell is a geographic quadrangle.
The cartographer calculates or interpolates the appropriate x-y locations
for every vertex in the graticule grid and draws the projected graticule by
connecting the dots. Finally, the cartographer draws the map data freehand,
attempting to account for the shape of the graticule cells, which usually
change shape across the map. Similarly, the toolbox calculates the x-y
locations of the four vertices of each graticule cell and warps or samples the
matrix data to fit the resulting quadrilateral.

In mapping data grids using the toolbox, as in traditional cartography,
the finer the mesh (analogous to using a graticule with more meridians
and parallels), the greater precision the projected map display will have,
at the cost of greater effort and time. The graticule in a printed map
is analogous to the spacing of grid elements in a regular data grid, the
Mapping Toolbox representation of which is two-element vectors of the form
[number-of-parallels, number-of-meridians]. The graticule for geolocated
data grids is similar; it is the size of the latitude and longitude coordinate

4-71

4 Creating and Viewing Maps

matrices: number-of-parallels = mrows-1 and number-of-meridians =
ncols-1. However, because geolocated data grids have arbitrary cell corner
locations, spacing can vary and thus their graticule is not a regular mesh.

The topo regular data grid can be displayed quickly using a coarse graticule,
at a cost of precision in terms of positioning the grid on the map. Observe the
map that results from the following commands:

% Get data grid
load topo

% Create referencing matrix
topoR = makerefmat('RasterSize', size(topo), ...

'Latlim', [-90 90], 'Lonlim', [0 360]);

% Set up Robinson proj
figure; axesm robinson

% Specify a 10x20 cell graticule
spacing = [10 20];

% Display data mapped to the graticule
h = meshm(topo,topoR,spacing);

% Set DEM colormap
demcmap(topo)

4-72

Displaying Data Grids

Notice that for this coarse graticule, the edges of the map do not appear as
smooth curves. Previous displays used the default [50 100] graticule, for
which this effect is negligible.

Regardless of the graticule resolution, the grid data is unchanged. In this
case, the data grid is the 180-by-360 topo matrix, and regardless of where it
is positioned, the data values are unchanged.

Map objects displayed as surfaces have all the properties of any MATLAB
surface, which can be set at object creation or by using the MATLAB set
function. The toolbox setm function allows the MeshGrat graticule property
to be changed after a regular data grid has been displayed. Since you saved
the handle of the last displayed map, reset its graticule to a very fine grid.
Because making the mesh more precise is a trade-off of resolution versus
time and memory, doing this takes longer, and requires more memory, to
display the map:

setm(h,'MeshGrat',[200 400])

Another way you can reset a graticule is with the meshgrat function:

[latgrat,longrat] = meshgrat(topo,topoR,[200 400]);
setm(h,'Graticule',latgrat,longrat);

The vectors latgrat and longrat produced by meshgrat are vectors
containing parallel and meridian values in each mesh direction.

4-73

4 Creating and Viewing Maps

Notice that the result does not appear to be any better than the original
display with the default [50 100] graticule, but it took much longer to produce.
There is no point to specifying a mesh finer than the data resolution (in this
case, 180-by-360 grid cells). In practice, it makes sense to use coarse graticules
for development tasks and fine graticules for final graphics production.

Using Raster Data to Create 3-D Displays
The simplest way to display raster data is to assign colors to matrix elements
according to their data values and view them in two dimensions. Raster data
maps also can be displayed as 3-D surfaces using the matrix values as the
z data. Here you explore some basic concepts and operations for setting up
surface views, which requires explicit horizontal coordinates.

Note The difference between regular raster data and a geolocated data grid
is that each grid intersection for a geolocated grid is explicitly defined with
(x,y) or (latitude, longitude) matrices or is interpolated from a graticule,
while a regular matrix only implies these locations (which is why it needs
a georeferencing vector or matrix).

You will use the raster elevation data in the korea MAT-file, which also
includes bathymetry data for the region around the Korean peninsula, along
with a referencing vector variable, which indicates that the data set is a
regular data grid and locates it on the Earth.

1 Load the MAT-file and transform this representation to a fully geolocated
data grid by calculating a mesh via the meshgrat function:

load korea
[lat,lon] = meshgrat(map,refvec);

2 Next use the km2deg function to convert the units of elevation from meters
to degrees, so they are commensurate with the latitude and longitude
coordinate matrices:

map = km2deg(map/1000);

3 Observe the results by typing the whos command:

4-74

Displaying Data Grids

whos

Name Size Bytes Class Attributes

description 2x64 256 char

lat 180x240 345600 double

lon 180x240 345600 double

map 180x240 345600 double

maplegend 1x3 24 double

refvec 1x3 24 double

source 2x76 304 char

The lat and lon coordinate matrices form a mesh the same size as the map
matrix. This is a requirement for constructing 3-D surfaces, unlike the
example given above using the topo raster data set, which was displayed in
2-D using the meshm function. If you inspect lat and lon in the MATLAB
Variable Editor, you find that in lon, all columns contain the same number
for a given row, and in lat, all rows contain the same number for a given
column. This is because the mesh produced by meshgrat in this case is
regular, but such data grids need not have equal spacing.

4 Now set up a map axes object with the equal area conic projection:

axesm('MapProjection','eqaconic','MapParallels',[],...
'MapLatLimit',[30 45],'MapLonLimit',[115 135])

5 Instead of using the meshm function to make this map, display the korea
geolocated data grid using the surfm function, and set an appropriate
colormap:

surfm(lat,lon,map,map); demcmap(map)
tightmap

Here is the result, which is the same as what meshm would produce.

4-75

4 Creating and Viewing Maps

Be aware, however, that this map is really a 3-D view seen from directly
overhead (the default perspective). To appreciate that, all you need to do is
to change your viewpoint.

6 Use the view function to specify a viewing azimuth of 60 degrees (from the
east southeast) and a viewing elevation of 30 degrees above the horizon:

view(60,30)

The figure immediately rotates to the specified perspective:

4-76

Displaying Data Grids

For information on Mapping Toolbox controls over perspective map
representations or for additional help on constructing 3-D map displays, see
Chapter 5, “Making Three-Dimensional Maps” .

4-77

4 Creating and Viewing Maps

Interacting with Displayed Maps

In this section...

“Picking Locations Interactively” on page 4-78

“Defining Small Circles and Tracks Interactively” on page 4-80

“Working with Objects by Name” on page 4-83

Picking Locations Interactively
You can use Mapping Toolbox functions and GUIs to interact with maps,
both in mapview and in figures created with axesm. This section describes
two useful graphic input functions, inputm and gcpmap. The inputm
function (analogous to the MATLAB ginput function) allows you to get the
latitude-longitude position of a mouse click. The gcpmap function (analogous
to the MATLAB function get(gca,'CurrentPoint')) returns the current
mouse position, also in latitude and longitude.

Explore inputm with the following commands, which display a map axes with
its grid and then request three mouse clicks, the locations of which are stored
as geographic coordinates in the variable points. Then the plotm function
plots the points you clicked as red markers. The display you see depends on
the points you select:

axesm sinusoid
framem on; gridm on
points=inputm(3)
points =

-41.7177 -145.0293
7.9211 -0.5332

38.5492 149.2237
plotm(points,'r*')

4-78

Interacting with Displayed Maps

Note If you click outside the map frame, inputm returns a valid but incorrect
latitude and longitude, even though the point you indicated is off the map.

One reason you might want to manually identify points on a map is to
interactively explore how much distortion a map projection has at given
locations. For example, you can feed the data acquired with inputm to the
distortcalc function, which computes area and angular distortions at any
location on a displayed map axes. If you do so using the points variable, the
results of the previous three mouse clicks are as follows:

[areascale,angledef] = distortcalc(points(1,1),points(1,2))
areascale =

1.0000
angledef =

85.9284
>> [areascale,angledef] = distortcalc(points(2,1),points(2,2))
areascale =

1.0000
angledef =

3.1143
[areascale,angledef] = distortcalc(points(3,1),points(3,2))
areascale =

1.0000
angledef =

76.0623

4-79

4 Creating and Viewing Maps

This indicates that the current projection (sinusoidal) has the equal-area
property, but exhibits variable angular distortion across the map, less near
the equator and more near the poles.

To see a working application that uses the inputm function, view and run the
Creating an Interactive Map for Selecting Point Features mapexfindcity
demo.

Defining Small Circles and Tracks Interactively
Geographic line annotations such as navigational tracks and small circles
can be generated interactively. Great circle tracks are the shortest distance
between points, and when closed partition the Earth into equal halves; a
small circle is the locus of points at a constant distance from a reference
point. Use trackg and scircleg to create them by clicking on the map.
Double-click the tracks or circles to modify the lines. Shift+click to type
specific parameters into a control panel. The control panels also allow you
to retrieve or set properties of tracks and circles (for instance, great circle
distances and small circle radii).

The following example illustrates how to interactively create a great circle
track from Los Angeles, California, to Tokyo, Japan, and a 1000 km radius
small circle centered on the Hawaiian Islands. The track is made via the
trackg function, which prompts you to select endpoints for a track with the
mouse. The scircleg function prompts for two points also, a center and any
point on the circumference of the small circle. The specifics of the track and
the circle are then adjusted more precisely with dialog controls:

1 Set up an orthographic view centered over the Pacific Ocean. Use the
coast MAT-file:

axesm('ortho','origin',[30 180])
framem;gridm
load coast
plotm(lat,long,'k')

2 Create a track with the trackg function, which prompts for two endpoints.
The default track type is a great circle:

trackg
Track1: Click on starting and ending points

4-80

Interacting with Displayed Maps

Click near Los Angeles and Tokyo, and the track is drawn.

3 Now create a small circle around Hawaii with the scircleg function, which
prompts for a center point and a point on the perimeter. Make the circle’s
radius about 2000 km, but don’t worry about getting the size exact:

scircleg
Circle 1: Click on center and perimeter

The map should look approximately like this.

4 Adjust the size of the small circle to be 2000 km by Shift+clicking anywhere
on its perimeter. The Small Circles dialog box appears.

5 Type 2000 into the Radius field.

6 Click Close. The small circle readjusts to be 2000 km around Hawaii.

7 To adjust the track between Los Angeles and Tokyo, Shift+click on it. This
brings up the Track dialog, with which you specify a position and initial
azimuth for either endpoint, as well as the length and type of the track.

4-81

4 Creating and Viewing Maps

8 Change the track type from Great Circle to Rhumb Line with the Track
pop-up menu. The track immediately changes shape.

9 Experiment with the other Track dialog controls. Also note that you can
move the endpoints of the track with the mouse by dragging the red circles,
and obtain the arc’s length in various units of distance.

The following figure shows the Small Circles and Track dialog boxes.

Interactive Text Annotation
You can also interactively place text annotations by clicking on a map
display. The textm function, which requires numerical arguments for
locating a specified text string, was illustrated in “Placing Geographic and
Nongeographic Objects in a Map Axes” on page 4-45. The gtextm function,
which takes a text string and optional properties as arguments, interactively
defines the location for the specified text object based on where you click
on the map.

4-82

Interacting with Displayed Maps

Try these gtextm commands to label the locations you have just annotated:

gtextm('Hawaii','color','r')
gtextm('Tokyo')
gtextm('Los Angeles')

The following figure displays the results of these gtextm commands. After
you place text, you can move it interactively using the selection tool in the
map figure window.

Working with Objects by Name
You can manipulate displayed map objects by name. Many Mapping Toolbox
functions assign descriptive names to the Tag property of the objects they
create. The namem and related functions allow you to control the display of
groups of similarly named objects, determine the names and change them if
desired, and use the name in the Handle Graphics® set and get functions.
There is also a Mapping Toolbox graphical user interface, mobjects, to help
you manage the display and control of objects.

4-83

4 Creating and Viewing Maps

Some mapping display functions like framem, gridm, and contourm assign
object tags by default. You can also set the name upon display by assigning
a string to the Tag property in mapping display functions that use property
name/property value pairs. If the Tag does not contain a string, the name
defaults to an object’s Type property, such as 'line' or 'text'.

Determining and Manipulating Object Names

1 Display a vector map of the world:

f = axesm('fournier')
framem on; gridm on;
plabel on; mlabel('MLabelParallel',0)
load coast
plotm(lat,long,'k','Tag','Coastline')

Below is the resulting map.

2 List the names of the objects in the current axes using namem:

namem
ans =
Coastline
PLabel
MLabel
Meridian
Parallel

4-84

Interacting with Displayed Maps

Frame

3 The handlem function allows you to dereference graphic objects and to get
or set their properties. Change the line width of the coastline with set:

set(handlem('Coastline'),'LineWidth',2)

4 Change the colors of the meridian and parallel labels separately:

set(handlem('Mlabel'),'Color',[.5 .2 0])
set(handlem('Plabel'),'Color',[.2 .5 0])

You can also change these labels to be the same color using setm:

setm(f,'fontcolor', [.4 .5 .6])

5 The handlem command with no arguments summons a UI control with a list
of map axes objects. This is useful for selecting objects interactively. Try

handlem

or

h = handlem

6 Combined with set, this makes it simple to change properties such as color.
Remember, however, to use the right property name. Patches, for example,
have a FaceColor and EdgeColor, while most other objects simply have
Color, as is the case with the Coastline object. Now use handlem to call a
color picker to set the coastline to any color you like:

set(handlem,'Color',uisetcolor)

The reference page for handlem lists the object names that it recognizes.
Note that most of these names can be prefixed with “all”, which returns an
array of all handles for that class of object.

7 Now try handlem using the all modifier:

t = handlem('alltext')
l = handlem('allline')

Note that you can also use all with the hidem and showm functions:

4-85

4 Creating and Viewing Maps

hidem('alltext')
showm('alltext')

For more information on the use of functions and tools for manipulating
objects, consult the setm, getm, handlem, hidem, showm, clmo, namem, tagm,
and mobjects reference pages.

4-86

5

Making Three-Dimensional
Maps

• “Sources of Terrain Data” on page 5-2

• “Reading Elevation Data Interactively” on page 5-13

• “Determining and Visualizing Visibility Across Terrain” on page 5-19

• “Shading and Lighting Terrain Maps” on page 5-21

• “Draping Data on Elevation Maps” on page 5-38

• “Working with the Globe Display” on page 5-47

5 Making Three-Dimensional Maps

Sources of Terrain Data

In this section...

“Digital Terrain Elevation Data from NGA” on page 5-2

“Digital Elevation Model Files from USGS” on page 5-3

“Determining What Elevation Data Exists for a Region” on page 5-3

Digital Terrain Elevation Data from NGA
Nearly all published terrain elevation data is in the form of data grids.
“Displaying Data Grids” on page 4-70 described basic approaches to rendering
surface data grids with Mapping Toolbox functions, including viewing surfaces
in 3-D axes. The following sections describe some common data formats for
terrain data, and how to access and prepare data sets for particular areas of
interest.

The Digital Terrain Elevation Data (DTED) Model is a series of gridded
elevation models with global coverage at resolutions of 1 kilometer or finer.
DTEDs are products of the U. S. National Geospatial Intelligence Agency
(NGA), formerly the National Imagery and Mapping Agency (NIMA), and
before that, the Defense Mapping Agency (DMA). The data is provided as
1-by-1 degree tiles of elevations on geographic grids with product-dependent
grid spacing. In addition to NGA’s own DTEDs, terrain data from Shuttle
Radar Topography Mission (SRTM), a cooperative project between NASA and
NGA, are also available in DTED format, levels 1 and 2 (see below).

The lowest resolution data is the DTED Level 0, with a grid spacing of 30
arc-seconds, or about 1 kilometer. The DTED files are binary. The files have
filenames with the extension dtN, where N is the level of the DTED product.
You can find published specifications for DTED at the NGA web site.

NGA also provides higher resolution terrain data files. DTED Level 1 has a
resolution of 3 arc-seconds, or about 100 meters, increasing to 18 arc-seconds
near the poles. It was the primary source for the USGS 1:250,000 (1 degree)
DEMs. Level 2 DTED files have a minimum resolution of 1 arc-second near
the equator, increasing to 6 arc-seconds near the poles. DTED files are
available on from several sources on CD-ROM, DVD, and on the Internet.

5-2

Sources of Terrain Data

Note For information on locating map data for download over the
Internet, see the following documentation at the MathWorks Web site:
http://www.mathworks.com/support/tech-notes/2100/2101.html.

Digital Elevation Model Files from USGS
The United States Geological Survey (USGS) has prepared terrain data grids
for the U.S. suitable for use at scales between 1:24,000 and 1:250,000 and
beyond. Some of this data originated from Defense Mapping Agency DTEDs.
Specifications and data quality information are available for these digital
elevation models (DEMs) and other U.S. National Mapping Program geodata
from the USGS. USGS no longer directly distributes 1:24,000 DEMs and other
large-scale geodata. U.S. DEM files in SDTS format are available from private
vendors, either for a fee or at no charge, depending on the data sets involved.

The largest scale USGS DEMs are partitioned to match the USGS 1:24,000
scale map series. The grid spacing for these elevations models is 30 meters
on a Universal Transverse Mercator grid. Each file covers a 7.5-minute
quadrangle. (Note, however, that only a subset of paper quadrangle maps are
projected with UTM, and that USGS vector geodata products might not use
this coordinate system.) The map and data series is available for much of the
conterminous United States, Hawaii, and Puerto Rico.

Determining What Elevation Data Exists for a Region
Several Mapping Toolbox functions and a GUI help you identify file names for
and manage digital elevation model data for areas of interest. These tools do
not retrieve data from the Internet; however, they do locate files that lie on
the Mapping Toolbox path and indicate the names of data sets that you can
download or order on magnetic media or CD-ROM.

Certain Mapping Toolbox utility functions can describe and import elevation
data. The following table describes functions that read in data, determine
what file names might exist for a given area, or return metadata for elevation
grid files. These files are data products packaged by government agencies;
with minor exceptions, the format used for each is unique to that data
product, which is why special functions are required to read them and why
their filenames and/or footprints can be known a priori.

5-3

http://www.mathworks.com/support/tech-notes/2100/2101.html

5 Making Three-Dimensional Maps

File Type Description
Function to Read
Files

Function to Identify
or Summarize Files

DTED U.S. Department
of Defense Digital
Terrain Elevation
Data

dted dteds

DEM USGS 1-degree
(3-arc-second
resolution) digital
elevation models

usgsdem usgsdems

DEM24K USGS 1:24K
(30-meter resolution)
digital elevation
models

usgs24kdem N/A

ETOPO1c,
ETOPO2v2c,
ETOPO2–2001, and
ETOPO5

Earth Topography
– 1-minute
(ETOPO1c), 2-minute
(ETOPO2v2c and
ETOPO2–2001), and
5-minute (ETOPO5)

etopo N/A

GTOPO30 Tiles of 30-arc-second
global elevation
models

gtopo30 gtopo30s

SATBATH Global 2-minute
(4 km) satellite
topography and
bathymetry data

satbath N/A

SDTS DEM Digital elevation
models in U.S. SDTS
format

sdtsdemread sdtsinfo (reads
metadata from catalog
file)

TBASE TerrainBase
topography and
bathymetry binary
and ASCII grid files

tbase N/A

5-4

Sources of Terrain Data

Note that the names of functions that identify file names are those of their
respective file-reading functions appended with s. These functions determine
file names for areas of interest, and have calling arguments of the form
(latlim, lonlim), with which you indicate the latitude and longitude limits
for an area of interest, and all return a list of filenames that provide the
elevations required. The southernmost latitude and the western-most
longitude must be the first numbers in latlim and lonlim, respectively.

Using dteds, usgsdems, and gtopo30s to Identify DEM Files
Suppose you want to obtain elevation data for the area around Cape Cod,
Massachusetts. You define your area of interest to extend from 41.1ºN to
43.9ºN latitude and from 71.9ºW to 69.1ºW longitude.

1 To determine which DTED files you need, use the dteds function, which
returns a cell array of strings:

dteds([41.1 43.9],[-71.9 -69.1])
ans =

'\DTED\W072\N41.dt0'
'\DTED\W071\N41.dt0'
'\DTED\W070\N41.dt0'
'\DTED\W072\N42.dt0'
'\DTED\W071\N42.dt0'
'\DTED\W070\N42.dt0'
'\DTED\W072\N43.dt0'
'\DTED\W071\N43.dt0'
'\DTED\W070\N43.dt0'

Note three important considerations about using DTED files:

a DTED filenames reflect latitudes only and thus do not uniquely specify
a data set; they must be organized within directories that specify
longitudes. When you download level 0 DTEDs, the DTED folder and
its subfolders are transferred as a compressed archive that you must
decompress before using.

b Some files that the dteds function identifies do not exist, either because
they completely cover water bodies or have never been created or
released by NGA. The dted function that reads the DTEDs handles
missing cells appropriately.

5-5

5 Making Three-Dimensional Maps

c NGA might or might not continue to make DTED data sets
available to the general public online. For information on
availability of terrain data from NGA and other sources, see
http://www.mathworks.com/support/tech-notes/2100/2101.html.

2 To determine the USGS DEM files you need, use the usgsdems function:

usgsdems([41.1 43.9],[-71.9 -69.1])
ans =

'portland-w'
'portland-e'
'bath-w'
'boston-w'
'boston-e'
'providence-w'
'providence-e'
'chatham-w'

Note that, in contrast to the dteds command you executed above, there
are eight rather than nine files listed to cover the 3-by-3-degree region of
interest. The cell that consists entirely of ocean has no name and is thus
omitted from the output cell array.

3 To determine the GTOPO30 files you need, use the gtopo30s function:

gtopo30s([41.1 43.9],[-71.9 -69.1])
ans =

'w100n90'

Note The DTED, GTOPO30, and small-scale (low-resolution) USGS DEM
grids are in latitude and longitude. Large-scale (24K) USGS DEMs grids are
in UTM coordinates. The usgs24kdem function automatically unprojects the
UTM grids to latitude and longitude; the stdsdemread function does not.

For additional information, see the reference pages for dteds, usgsdems,
usgs24kdem, and gtopo30s.

5-6

http://www.mathworks.com/support/tech-notes/2100/2101.html

Sources of Terrain Data

Mapping a Single DTED File with the DTED Function
In this exercise, you render DTED level 0 data for a portion of Cape Cod. The
1°-by-1° file can be downloaded from NGA or purchased on CD-ROM. You
read and display the elevation data at full resolution as a lighted surface to
show both large- and small-scale variations in the data.

1 Define the area of interest and determine the file to be obtained:

latlim = [41.20 41.95];
lonlim = [-70.95 -70.10];

2 To determine which DTED files you need, use the dteds function, which
returns a cell array of strings:

dteds(latlim, lonlim)
ans =

'dted\w071\n41.dt0'

In this example, only one DTED file is needed, so the answer is a single
string. For more information on the dteds function, see “Using dteds,
usgsdems, and gtopo30s to Identify DEM Files” on page 5-5).

3 Unless you have a CD-ROM containing this file, download it from the
source indicated in the following tech note:

http://www.mathworks.com/support/tech-notes/2100/2101.html

The original data comes as a compressed tar or zip archive that you must
expand before using.

4 Use the dted function to create a terrain grid and a referencing vector in
the workspace at full resolution. If more than one DTED file named n41.dt0
exists on the path, your working folder must be /dted/w071 in order to be
sure that dted finds the correct file. If the file is not on the path, you are
prompted to navigate to the n41.dt0 file by the dted function:

samplefactor = 1;
[capeterrain, caperef] = dted('n41.dt0', ...

samplefactor, latlim, lonlim);

5 Because DTED files contain no bathymetric depths, decrease elevations of
zero slightly to render them with blue when the colormap is reset:

5-7

http://www.mathworks.com/support/tech-notes/2100/2101.html

5 Making Three-Dimensional Maps

capeterrain(capeterrain == 0) = -1;

6 Use usamap to construct an empty map of axes for the region defined by
the latitude and longitude limits:

figure;
ax = usamap(latlim,lonlim);

7 Read data for the region defined by the latitude and longitude limits from
the usastatehi shapefile:

capecoast = shaperead('usastatehi',...
'UseGeoCoords', true,...
'BoundingBox', [lonlim' latlim']);

8 Display coastlines on the map axes that was created with usamap:

geoshow(ax, capecoast, 'FaceColor', 'none');

At this point the map looks like this:

9 Render the elevations, and set the colormap accordingly:

meshm(capeterrain, caperef, size(capeterrain), capeterrain);
demcmap(capeterrain)

5-8

Sources of Terrain Data

The resulting map, shown below, is a window on Cape Cod, and illustrates
the relative coarseness of DTED level 0 data.

Mapping Multiple DTED Files with the DTED Function
When your region of interest extends across more than one DTED tile, the
dted function concatenates the tiles into a single matrix, which can be at full
resolution or a sample of every nth row and column. You can specify a single
DTED file, a folder containing several files (for different latitudes along a
constant longitude), or a higher level folder containing subfolders with files
for several longitude bands.

1 To follow this exercise, you need to acquire the necessary DTED files from
the Internet as described in the following tech note

http://www.mathworks.com/support/tech-notes/2100/2101.html

or from a CD-ROM. This yields a set of directories that contain the
following files:

/dted
/w070

n41.avg
n41.dt0
n41.max

5-9

http://www.mathworks.com/support/tech-notes/2100/2101.html

5 Making Three-Dimensional Maps

n41.min
n43.avg
n43.dt0
n43.max
n43.min

/w071
n41.avg
n41.dt0
n41.max
n41.min
n42.avg
n42.dt0
n42.max
n42.min
n43.avg
n43.dt0
n43.max
n43.min

/w072
n41.avg
n41.dt0
n41.max
n41.min
n42.avg
n42.dt0
n42.max
n42.min
n43.avg
n43.dt0
n43.max
n43.min

2 Change your working folder to the folder that includes the top-level DTED
folder (which is always named dted).

3 Use the dted function, specifying that folder as the first argument:

latlim = [41.1 43.9];
lonlim = [-71.9 -69.1];
samplefactor = 5;

5-10

Sources of Terrain Data

[capetopo,caperef] = dted(pwd, samplefactor, latlim, lonlim);

The sample factor value of 5 specifies that only every fifth data cell, in both
latitude and longitude, will be read from the original DTED file. You can
choose a larger value to save memory and speed processing and display, at
the expense of resolution and accuracy. The size of your elevation array
(capetopo) will be inversely proportional to the square of the sample factor.

Note You can specify a DTED filename rather than a folder name if you
are accessing only one DTED file. If the file cannot be found, a file dialog
is presented for you to navigate to the file you want. See the example
“Mapping a Single DTED File with the DTED Function” on page 5-7.

4 As DTEDs contain no bathymetric depths, recode all zero elevations to -1,
to enable water areas to be rendered properly:

capetopo(capetopo==0)=-1;

5 Obtain the elevation grid’s latitude and longitude limits; use them to draw
an outline map of the area to orient the viewer:

[latlim,lonlim] = limitm(capetopo,caperef);

figure;
ax = usamap(latlim,lonlim);
capecoast = shaperead('usastatehi',...

'UseGeoCoords', true,...
'BoundingBox', [lonlim' latlim']);

geoshow(ax,capecoast,'FaceColor','None');

The map now looks like this.

5-11

5 Making Three-Dimensional Maps

6 Render the elevation grid with meshm, and then recolor the map with
demcmap to display hypsometric colors (elevation tints):

meshm(capetopo, caperef, size(capetopo), capetopo);
demcmap(capetopo)

Here is the map; note the missing tile to the right where no DTED data exists.

5-12

Reading Elevation Data Interactively

Reading Elevation Data Interactively

Extracting DEM Data with demdataui
You can browse many formats of digital elevation map data using the
demdataui graphical user interface. The demdataui GUI determines
and graphically depicts coverage of ETOPO5, TerrainBase, the satellite
bathymetry model (SATBATH), GTOPO30, GLOBE, and DTED data sets on
local and network file systems, and can import these files into the workspace.

Note When it opens, demdataui scans your Mapping Toolbox path for
candidate data files. On PCs, it also checks the root directories of CD-ROMs
and other drives, including mapped network drives. This can cause a delay
before the GUI appears.

You can choose to read from any of the data sets demdataui has located. If
demdataui does not recognize data you think it should find, check your path
and click Help to read about how files are identified.

This exercise illustrates how to use the demdataui interface. You will not
necessarily have all the DEM data sets shown in this example. Even if you
have only one (the DTED used in the previous exercise, for example), you can
still follow the steps to obtain your own results:

1 Open the demdataui UI. It scans the path for data before it is displayed:

demdataui

5-13

5 Making Three-Dimensional Maps

The Source list in the left pane shows the data sets that were found. The
coverage of each data set is indicated by a yellow tint on the map with gray
borders around each tile of data. Here, the source is selected to present
all DTED files available to a user.

2 Clicking a different source in the left column updates the coverage display.
Here is the coverage area for available GTOPO30 tiles.

5-14

Reading Elevation Data Interactively

3 Use the map in the UI to specify the location and density of data to extract.
To interactively set a region of interest, click in the map to zoom by a factor
of two centered on the cursor, or click and drag across the map to define a
rectangular region. The size of the matrix of the area currently displayed is
printed above the map. To reduce the amount of data, you can continue to
zoom in, or or you can raise the Samplefactor slider. A sample factor of 1
reads every point, 2 reads every other point, 3 reads every third point, etc.
The matrix size is updated when you move the Samplefactor slider.

Here is the UI panel after selecting ETOPO30 data and zooming in on the
Indian subcontinent.

5-15

5 Making Three-Dimensional Maps

4 To see the terrain you have windowed at the sample factor you specified,
click the Get button. This causes the GUI map pane to repaint to display
the terrain grid with the demcmap colormap. In this example, the data grid
contains 580-by-568 data values, as shown below.

5-16

Reading Elevation Data Interactively

5 If you are not satisfied with the result, click the Clear button to remove all
data previously read in via Get and make new selections. You might need
to close and reopen demdatui in order to select a new region of interest.

6 When you are ready to import DEM data to the workspace or save it as a
MAT-file, click the Save button. Select a destination and name the output
variable or file. You can save to a MAT-file or to a workspace variable.
The demdataui function returns one or more matrices as an array of
display structures, having one element for each separate get you requested
(assuming you did not subsequently Clear). You then use geoshow or
mlayers to add the data grids to a map axes.

The data returned by demdataui contains display structures. You
cannot update these to geographic data structures (geostructs) using the
updategeostruct function, because they are of type surface, which the
updating function does not recognize. However, you can still display them
with geoshow, as shown in the next step.

5-17

5 Making Three-Dimensional Maps

7 To access the contents of the display structure, use its field names. Here
map and maplegend are copied from the structure and used to create a
lighted three-dimensional elevation map display using worldmap. (demdata
is the default name for the structure, which you can override when you
save it.)

Z = demdata.map;
refvec = demdata.maplegend;
figure
ax = worldmap(Z, refvec);
geoshow(ax, Z, refvec, 'DisplayType', 'texturemap');
axis off
demcmap(Z);

5-18

Determining and Visualizing Visibility Across Terrain

Determining and Visualizing Visibility Across Terrain

Computing Line of Sight with los2
You can use regular data grids of elevation data to answer questions about
the mutual visibility of locations on a surface (intervisibility). For example,

• Is the line of sight from one point to another obscured by terrain?

• What area can be seen from a location?

• What area can see a given location?

The first question can be answered with the los2 function. In its simplest
form, los2 determines the visibility between two points on the surface of a
digital elevation map. You can also specify the altitudes of the observer and
target points, as well as the datum with respect to which the altitudes are
measured. For specialized applications, you can even control the actual and
effective radius of the Earth. This allows you to assume, for example, that
the Earth has a radius 1/3 larger than its actual value, a setting which is
frequently used in modeling radio wave propagation.

The following example shows a line-of-sight calculation between two points
on a regular data grid generated by the peaks function. The calculation is
performed by the los2 function, which returns a logical result: 1 (points are
mutually visible—intervisible), or 0 (points are not intervisible).

1 Create an elevation grid using peaks with a maximum elevation of 500,
and set its origin at (0°N, 0°W), with a spacing of 1000 cells per degree):

map = 500*peaks(100);
maplegend = [1000 0 0];

2 Define two locations on this grid to test intervisibility:

lat1 = -0.027;
lon1 = 0.05;
lat2 = -0.093;
lon2 = 0.042;

5-19

5 Making Three-Dimensional Maps

3 Calculate intervisibility. The final argument specifies the altitude (in
meters) above the surface of the first location (lat1, lon1) where the
observer is located (the viewpoint):

los2(map,maplegend,lat1,lon1,lat2,lon2,100)
ans =

1

The los2 function produces a profile diagram in a figure window showing
visibility at each grid cell along the line of sight that can be used to interpret
the Boolean result. In this example, the diagram shows that the line between
the two locations just barely clears an intervening peak.

You can also compute the viewshed, a name derived from watershed, which
indicates the elements of a terrain elevation grid that are visible from a
particular location. The viewshed function checks for a line of sight between
a fixed observer and each element in the grid. See the viewshed function
reference page for an example.

5-20

Shading and Lighting Terrain Maps

Shading and Lighting Terrain Maps

In this section...

“Lighting a Terrain Map Constructed from a DTED File” on page 5-21

“Lighting a Global Terrain Map with lightm and lightmui” on page 5-24

“Surface Relief Shading” on page 5-27

“Colored Surface Shaded Relief” on page 5-31

“Relief Mapping with Light Objects” on page 5-34

Lighting a Terrain Map Constructed from a DTED File
The lightm function creates light objects in the current map. To modify the
positions and colors of lights created on world maps or large regions you
can use the interactive lightmui GUI. For finer control over light position
(for example, in small areas lit by several lights), you have to specify light
positions using projected coordinates. This is because lights are children of
axes and share their coordinate space. See “Lighting a Global Terrain Map
with lightm and lightmui” on page 5-24 for an example of using lightmui.

In this exercise, you manually specify the position of a single light in the
northwest corner of a DTED DEM for Cape Cod.

1 To illustrate lighting terrain maps, begin by following the exercise in
“Mapping a Single DTED File with the DTED Function” on page 5-7, or
execute the steps below:

latlim = [41.20 41.95];
lonlim = [-70.95 -70.10];
cd dted\w071 % Note: Your absolute path may vary.
samplefactor = 1;
[capeterrain, caperef] = dted('n41.dt0', samplefactor, ...

latlim, lonlim);
capeterrain(capeterrain == 0) = -1;
capecoast = shaperead('usastatehi', ...

'UseGeoCoords', true, ...
'BoundingBox', [lonlim' latlim']);

5-21

5 Making Three-Dimensional Maps

2 Construct a map of the region within the specified latitude and longitude
limits:

figure
ax = usamap(latlim,lonlim);
set(gcf,'Renderer','zbuffer')
geoshow(ax,capecoast,'FaceColor','none');
geoshow(ax,capeterrain,caperef,'DisplayType','texturemap');
demcmap(capeterrain)

The map looks like this.

3 Set the vertical exaggeration. Use daspectm to specify that elevations are
in meters and should be multiplied by 20:

daspectm('m',20)

4 Make sure that the line data is visible. To ensure that it is not obscured by
terrain, use zdatam to set it to the highest elevation of the cape1 terrain
data:

zdatam('allline',max(capeterrain(:)))

5 Specify a location for a light source with lightm:

lightm(42,-71)

5-22

Shading and Lighting Terrain Maps

If you omit arguments, a GUI for setting positional properties for the new
light opens.

6 The lighting computations caused the map to become quite dark with
specular highlights. Now restore its luminance by specifying three surface
reflectivity properties in the range of 0 to 1:

ambient = 0.7; diffuse = 1; specular = 0.6;
material([ambient diffuse specular])

The surface looks blotchy because there is no interpolation of the lighting
component (flat facets are being modeled). Correct this by specifying Phong
shading:

lighting phong

The map now looks like this.

7 If you want to compare the lit map with the unlit version, you can toggle
the lighting off:

lighting none

For additional information, see the reference pages for daspectm, lightm,
light, lighting, and material.

5-23

5 Making Three-Dimensional Maps

Lighting a Global Terrain Map with lightm and
lightmui
In this example, you create a global topographic map and add a local light at
a distance of 250 km above New York City, (40.75 °N, 73.9 °W). You then
change the material and lighting properties, add a second light source, and
activate the lightmui tool to change light position, altitude, and colors.

The lightmui display plots lights as circular markers whose facecolor
indicates the light color. To change the position of a light, click and drag the
circular marker. Alternatively, right-clicking the circular marker summons a
dialog box for changing the position or color of the light object. Clicking the
color bar in that dialog box invokes the uisetcolor dialog box that can be
used to specify or pick a color for the light.

1 Load the topo DTM files, and set up an orthographic projection:

load topo
axesm('mapprojection','ortho','origin',[10 -20 0])
axis off
set(gcf,'Renderer','zbuffer')

2 Plot the topography and assign a topographic colormap:

meshm(topo,topolegend);
demcmap(topo)

3 Set up a yellow light source over New York City:

lightm(40.75,-73.9,500/earthRadius('km'),...
'color','yellow','style','local')

The first two arguments to lightm are the latitude and longitude of the
light source. The third argument is its altitude, in units of Earth radii.

4 The surface is quite dark, so give it more reflectivity by specifying

material([0.7270 1.5353 1.9860 4.0000 0.9925])
lighting phong; hidem(gca)

The lighted orthographic map looks like this.

5-24

Shading and Lighting Terrain Maps

5 If you want, add more lights, as follows:

lightm(20,40,0.1,'color','magenta','style','local')

The second light is magenta, and positioned over the Gulf of Arabia.

6 To modify the lights, use the lightmui GUI, which lets you drag lights
across a world map and specify their color and altitudes:

lightmui(gca)

The lights are shown as appropriately colored circles, which you can drag to
new positions. You can also Ctrl+click a circle to bring up a dialog box for
directly specifying that light’s position, altitude, and color. The GUI and
the map look like this at this point.

5-25

5 Making Three-Dimensional Maps

7 In the lightmui window, drag the yellow light to the eastern tip of Brazil,
and drag the magenta light to the Straits of Gibraltar.

8 Ctrl+click or Shift+click the magenta circle in the lightmui window. A
second UI, for setting light position and color, opens. Set the altitude
to 0.04 (Earth radii). Set the light color components to 1.0 (red), 0.75
(green), and 1.0 (blue). Press Return after each action. The colorbar on the
UI changes to indicate the color you set. If you prefer to pick a color, click
on the colorbar to bring up a color-choosing UI. The map now looks like this.

5-26

Shading and Lighting Terrain Maps

For additional information, see the reference pages for lightm and lightmui.

Surface Relief Shading
You can make dimensional monochrome shaded-relief maps with the function
surflm, which is analogous to the MATLAB surfl function. The effect of
surflm is similar to using lights, but the function models illumination itself
(with one “light source” that you specify when you invoke it, but cannot
reposition) by weighting surface normals rather than using light objects.

Shaded relief maps of this type are usually portrayed two-dimensionally
rather than as perspective displays. The surflm function works with any
projection except globe.

The surflm function accepts geolocated data grids only. Recall, however, that
regular data grids are a subset of geolocated data grids, to which they can be
converted using meshgrat (see “Fitting Gridded Data to the Graticule” on
page 4-71). The following example illustrates this procedure.

Creating Monochrome Shaded Relief Maps Using surflm
As stated above, surflm simulates a single light source instead of inserting
light objects in a figure. Conduct the following exercise with the korea data
set to see how surflm behaves. It uses worldmap to set up an appropriate map
axes and reference outlines.

5-27

5 Making Three-Dimensional Maps

1 Set up a projection and display a vector map of the Korean peninsula
with worldmap:

figure;
ax = worldmap('korea');

latlim = getm(ax,'MapLatLimit');
lonlim = getm(ax,'MapLonLimit');

coastline = shaperead('landareas',...
'UseGeoCoords', true,...
'BoundingBox', [lonlim' latlim']);

geoshow(ax, coastline, 'FaceColor', 'none');

worldmap chooses a projection and map bounds to make this map.

2 Load the korea terrain model:

load korea

3 Generate the grid of latitudes and longitudes to transform the regular
data grid to a geolocated one:

5-28

Shading and Lighting Terrain Maps

[klat,klon] = meshgrat(map,refvec);

4 Use surflm to generate a default shaded relief map, and change the
colormap to a monochromatic scale, such as gray, bone, or copper.

ht = surflm(klat,klon,map);
colormap('copper')

In this default case, the lighting direction is set at 45º counterclockwise
from the viewing direction; thus the “sun” is in the southeast. This map
is shown below.

5 To make the light come from some other direction, specify the light source’s
azimuth and elevation as the fourth argument to surflm. Clear the terrain
map and redraw it, specifying an azimuth of 135º (northeast) and an
elevation of 60º above the horizon:

clmo(ht); ht=surflm(klat,klon,map,[135,60]);

The surface lightens and has a new character because it is lit closer to
overhead and from a different direction.

5-29

5 Making Three-Dimensional Maps

6 Now shift the light to the northwest (-135º azimuth), and lower it to 40º
above the horizon. Because a lower “sun” decreases the overall reflectance
when viewed from straight above, also specify a more reflective surface
as a fifth argument to surflm. This is a 1-by-4 vector describing relative
contributions of ambient light, diffuse reflection, specular reflection, and a
specular shine coefficient. It defaults to [.55 .6 .4 10].

clmo(ht); ht=surflm(klat,klon,map,[-135, 30],[.65 .4 .3 10]);

This is a good choice for lighting this terrain, because of the predominance
of mountain ridges that run from northeast to southwest, more or less
perpendicular to the direction of illumination. Here is the final map.

5-30

Shading and Lighting Terrain Maps

For further information, see the reference pages for surflm and surfl.

Shaded relief representations can highlight the fine structure of the land
and sea floor, but because of the monochromatic coloration, it is difficult to
distinguish land from sea. The next section describes how to color such maps
to set off land from water.

Colored Surface Shaded Relief
The functions meshlsrm and surflsrm display maps as shaded relief with
surface coloring as well as light source shading. You can think of them as
extensions to surflm that combine surface coloring and surface light shading.
Use meshlsrm to display regular data grids and surflsrm to render geolocated
data grids.

These two functions construct a new colormap and associated CData matrix
that uses grayscales to lighten or darken a matrix component based on its
calculated surface normal to a light source. While there are no analogous
MATLAB display functions that work like this, you can obtain similar results
using MATLAB light objects, as “Relief Mapping with Light Objects” on page
5-34 explains.

5-31

5 Making Three-Dimensional Maps

Coloring Shaded Relief Maps and Viewing Them in 3-D
In this exercise, you use surflsrm in a way similar to how you used surflm
in the preceding exercise, “Creating Monochrome Shaded Relief Maps Using
surflm” on page 5-27. In addition, you set a vertical scale and view the map
from various perspectives.

1 Start with a new map axes and the korea data, and then georeference
the regular data grid:

load korea
[klat,klon] = meshgrat(map,refvec);
axesm miller

2 Create a colormap for DEM data; it is transformed by surflsm to shade
relief according to how you specify the sun’s altitude and azimuth:

[cmap,clim] = demcmap(map);

3 Plot the colored shaded relief map, specifying an azimuth of -135º and an
altitude of 50º for the light source:

surflsrm(klat,klon,map,[-130 50],cmap,clim)

You can also achieve the same effect with meshlsrm, which operates
on regular data grids (it first calls meshgrat, just as you just did), e.g.,
meshlsrm(map,maplegend).

4 The surface has more contrast than if it were not shaded, and it might help
to lighten it uniformly by 25% or so:

brighten(.25)

The map, which has an overhead view, looks like this.

5-32

Shading and Lighting Terrain Maps

5 Plot an oblique view of the surface by hiding its bounding box, exaggerating
terrain relief by a factor of 50, and setting the view azimuth to -30º
(south-southwest) and view altitude to 30º above the horizon:

set(gca,'Box','off')
daspectm('meters',50)
view(-30,30)

The map now looks like this.

6 You can continue to rotate the perspective with the view function (or
interactively with the Rotate 3D tool in the figure window), and to
change the vertical exaggeration with the daspectm function. You cannot

5-33

5 Making Three-Dimensional Maps

change the built-in lighting direction without generating a new view using
surflsrm.

For further information, see the reference pages for surflsrm, meshlsrm,
daspectm, and view.

Relief Mapping with Light Objects
In the exercise “Lighting a Global Terrain Map with lightm and lightmui” on
page 5-24, you created light objects to illuminate a Globe display. In the
following one, you create a light object to mimic the map produced in the
previous exercise (“Coloring Shaded Relief Maps and Viewing Them in 3-D” on
page 5-32), which uses shaded relief computations rather than light objects.

The meshlsrm and surflsrm functions simulate lighting by modifying the
colormap with bands of light and dark. The map matrix is then converted to
indices for the new “shaded” colormap based on calculated surface normals.
Using light objects allows for a wide range of lighting effects. The toolbox
manages light objects with the lightm function, which depends upon the
MATLAB light function. Lights are separate MATLAB graphic objects, each
with its own object handle.

Colored 3-D Relief Maps Illuminated with Light Objects
As a comparison to the lighted shaded relief example shown earlier, add a
light source to the surface colored data grid of the Korean peninsula region:

1 If you need to, load the korea DEM, and create a map axes using the
Miller projection:

load korea
figure; axesm('MapProjection','miller',...

'MapLatLimit',[30 45],'MapLonLimit',[115 135])

2 Display the DEM with meshm, and color it with terrain hues:

meshm(map,refvec,size(map),map);
demcmap(map)

The map, without lighting effects, looks like this.

5-34

Shading and Lighting Terrain Maps

3 Create a light object with lightm (similar to the MATLAB light function,
but specifies position with latitude and longitude rather than x, y, z). The
light is placed at the northwest corner of the grid, one degree high:

h=lightm(45,115,1)

The figure becomes darker.

4 To see any relief in perspective, it is necessary to exaggerate the vertical
dimension. Use a factor of 50 for this:

daspectm('meters',50)

The figure becomes darker still, with highlights at peaks.

5 Set the ambient (direct), diffuse (skylight), and specular (highlight) surface
reflectivity characteristics, respectively:

material ([.7, .9, .8])

6 By default, the lighting is flat (plane facets). Change this to Phong shading
(interpolated normal vectors at facet corners):

lighting phong

The map now looks like this.

5-35

5 Making Three-Dimensional Maps

7 Finally, remove the edges of the bounding box and set a viewpoint of -30º
azimuth, 30º altitude:

set(gca,'Box','off')
view(-30,30)

The view from (-30,30) with one light at (45,115,1) and Phong shading
is shown below. Compare it to the final map in the previous exercise,
“Coloring Shaded Relief Maps and Viewing Them in 3-D” on page 5-32.

To remove a light (when there is only one) from the current figure, type

5-36

Shading and Lighting Terrain Maps

clmo(handlem('light'))

For more information, consult the reference pages for lightm, daspectm,
material, lighting, and view, along with the section on “Lighting as a
Visualization Tool” in the 3–D Visualization documentation.

5-37

5 Making Three-Dimensional Maps

Draping Data on Elevation Maps

In this section...

“Draping Geoid Heights over Topography” on page 5-38

“Draping Data over Terrain with Different Gridding” on page 5-41

Draping Geoid Heights over Topography
Lighting effects can provide important visual cues when elevation maps are
combined with other kinds of data. The shading resulting from lighting a
surface makes it possible to “drape” satellite data over a grid of elevations.
It is common to use this kind of display to overlay georeferenced land cover
images from Earth satellites such as LANDSAT and SPOT on topography
from digital elevation models. Mapping Toolbox displays use variations of
techniques described in the previous section.

When the elevation and image data grids correspond pixel-for-pixel to the
same geographic locations, you can build up such displays using the optional
altitude arguments in the surface display functions. If they do not, you can
interpolate one or both source grids to a common mesh.

The following example shows the figure of the Earth (the geoid data set)
draped on topographic relief (the topo data set). The geoid data is shown as
an attribute (using a color scale) rather than being depicted as a 3-D surface
itself. The two data sets are both 1-by-1-degree meshes sharing a common
origin.

Note The geoid can be described as the surface of the ocean in the absence
of waves, tides, or land obstructions. It is influenced by the gravitational
attraction of denser or lighter materials in the Earth’s crust and interior and
by the shape of the crust. A model of the geoid is required for converting
ellipsoidal heights (such as might be obtained from GPS measurements) to
orthometric heights. Geoid heights vary from a minimum of about 105 meters
below sea level to a maximum of about 85 meters above sea level.

1 Begin by loading the topo and geoid regular data grids:

5-38

Draping Data on Elevation Maps

load topo
load geoid

2 Create a map axes using a Gall stereographic cylindrical projection (a
perspective projection):

axesm gstereo

3 Use meshm to plot a colored display of the geoid’s variations, but specify
topo as the final argument, to give each geoid grid cell the height (z-value)
of the corresponding topo grid cell:

meshm(geoid,geoidrefvec,size(geoid),topo)

Low geoid heights are shown as blue, high ones as red.

4 For reference, plot the world coastlines in black, raise their elevation to
1000 meters (high enough to clear the surface in their vicinity), and expand
the map to fill the frame:

load coast
plotm(lat,long,'k')
zdatam(handlem('allline'),1000)
tightmap

At this point the map looks like this.

5-39

5 Making Three-Dimensional Maps

5 Due to the vertical view and lack of lighting, the topographic relief
is not visible, but it is part of the figure’s surface data. Bring it
out by exaggerating relief greatly, and then setting a view from the
south-southeast:

daspectm('m',200); tightmap
view(20,35)

6 Remove the bounding box, shine a light on the surface (using the default
position, offset to the right of the viewpoint), and render again with Phong
shading:

set(gca,'Box','off')
camlight;
lighting phong

7 Finally, set the perspective to converge slightly (the default perspective
is orthographic):

set(gca,'projection','perspective')

The final map is shown below. From it, you can see that the geoid mirrors
the topography of the major mountain chains such as the Andes, the

5-40

Draping Data on Elevation Maps

Himalayas, and the Mid-Atlantic Ridge. You can also see that large areas
of high or low geoid heights are not simply a result of topography.

Draping Data over Terrain with Different Gridding
If you want to combine elevation and attribute (color) data grids that cover
the same region but are gridded differently, you must resample one matrix to
be consistent with the other. It helps if at least one of the grids is a geolocated
data grid, because their explicit horizontal coordinates allow them to be
resampled using the ltln2val function. To combine dissimilar grids, you
can do one of the following:

• Construct a geolocated grid version of the regular data grid values.

• Construct a regular grid version of the geolocated data grid values.

The following two examples illustrate these closely related approaches.

Draping via Converting a Regular Grid to a Geolocated Data
Grid
This example drapes slope data from a regular data grid on top of elevation
data from a geolocated data grid. Although the two data sets actually have
the same origin (the geolocated grid derives from the topo data set), this
approach works with any dissimilar grids. The example uses the geolocated
data grid as the source for surface elevations and transforms the regular data
grid into slope values, which are then sampled to conform to the geolocated

5-41

5 Making Three-Dimensional Maps

data grid (creating a set of slope values for the diamond-shaped grid) and
color-coded for surface display.

Note When you use ltln2val to resample a regular data grid over an
irregular area, make sure that the regular data grid completely covers the
area of the geolocated data grid.

1 Begin by loading the geolocated data grids from mapmtx, which contains two
regions. You will only use the diamond-shaped portion of mapmtx (lt1, lg1,
and map1) centered on the Middle East, not the lt2, lg2, and map1 data:

load mapmtx lt1
load mapmtx lg1
load mapmtx map1

Load the topo global regular data grid:

load topo

2 Compute surface aspect, slope, and gradients for topo. You use only the
slopes in subsequent steps:

[aspect,slope,gradN,gradE] = gradientm(topo,topolegend);

3 Use ltln2val to interpolate slope values to the geolocated grid specified
by lt1, lg1:

slope1 = ltln2val(slope,topolegend,lt1,lg1);

The output is a 50-by-50 grid of elevations matching the coverage of the
map1 variable.

4 Set up a figure with a Miller projection and use surfm to display the slope
data. Specify the z-values for the surface explicitly as the map1 data, which
is terrain elevation:

figure; axesm miller
surfm(lt1,lg1,slope1,map1)

5-42

Draping Data on Elevation Maps

The map mainly depicts steep cliffs, which represent mountains (the
Himalayas in the northeast), and continental shelves and trenches.

5 The coloration depicts steepness of slope. Change the colormap to make
the steepest slopes magenta, the gentler slopes dark blue, and the flat
areas light blue:

colormap cool;

6 Use view to get a southeast perspective of the surface from a low viewpoint:

view(20,30); daspectm('m',200)

In 3-D, you immediately see the topography as well as the slope.

7 The default rendering uses faceted shading (no smooth interpolation).
Render the surface again, this time making it shiny with Phong shading
and lighting from the east (the default of camlight lights surfaces from
over the viewer’s right shoulder):

material shiny;camlight;lighting phong

8 Finally, remove white space and re-render the figure in perspective mode:

axis tight; set(gca,'Projection','Perspective')

Here is the mapped result.

5-43

5 Making Three-Dimensional Maps

Draping a Geolocated Grid on Regular Data Grid via Texture
Mapping
The second way to combine a regular and a geolocated data grid is to construct
a regular data grid of your geolocated data grid’s z-data. This approach has
the advantage that more computational functions are available for regular
data grids than for geolocated ones. Another aspect is that the color and
elevation grids do not have to be the same size. If the resolutions of the two
are different, you can create the surface as a three-dimensional elevation
map and later apply the colors as a texture map. You do this by setting the
surface Cdata property to contain the color matrix, and setting the surface
face color to 'TextureMap'.

In the following steps, you create a new regular data grid that covers the
region of the geolocated data grid, then embed the color data values into the
new matrix. The new matrix might need to have somewhat lower resolution
than the original, to ensure that every cell in the new map receives a value.

1 Load the topo and terrain data from mapmtx:

load topo;
load mapmtx lt1
load mapmtx lg1
load mapmtx map1

5-44

Draping Data on Elevation Maps

2 Identify the geographic limits of one of the mapmtx geolocated grids:

latlim = [min(lt1(:)) max(lt1(:))];
lonlim = [min(lg1(:)) max(lg1(:))];

3 Trim the topo data to the rectangular region enclosing the smaller grid:

[topo1,topo1ref] = maptrims(topo,topolegend,latlim,lonlim);

4 Create a regular grid filled with NaNs to receive texture data:

[curve1,curve1ref] = nanm(latlim,lonlim,.5);

The last parameter establishes the grid at 1/.5 cells per degree.

5 Use imbedm to embed values from map1 into the curve1 grid; the values are
the discrete Laplacian transform (the difference between each element of
the map1 grid and the average of its four orthogonal neighbors):

curve1 = imbedm(lt1,lg1,del2(map1),curve1,curve1ref);

6 Set up a map axes with the Miller projection and use meshm to draw the
topo1 extract of the topo DEM:

figure; axesm miller
h = meshm(topo1,topo1ref,size(topo1),topo1);

7 Render the figure as a 3-D view from a 20º azimuth and 30º altitude, and
exaggerate the vertical dimension by a factor of 200:

view(20,30); daspectm('m',200)

8 Light the view and render with Phong shading in perspective:

material shiny; camlight; lighting phong
axis tight; set(gca,'Projection','Perspective')

So far, both the surface relief and coloring represent topographic elevation.

5-45

5 Making Three-Dimensional Maps

9 Apply the curve1 matrix as a texture map directly to the figure using the
set function:

set(h,'Cdata',curve1,'FaceColor','TextureMap')

The area originally covered by the [lt1, lg1, map1] geolocated data grid,
and recoded via the Laplacian transform as curve1, now controls color
symbolism, with the NaN-coded outside cells rendered in black.

5-46

Working with the Globe Display

Working with the Globe Display

In this section...

“What Is the Globe Display?” on page 5-47

“The Globe Display Compared with the Orthographic Projection” on page
5-48

“Using Opacity and Transparency in Globe Displays” on page 5-50

“Over-the-Horizon 3-D Views Using Camera Positioning Functions” on
page 5-53

“Displaying a Rotating Globe” on page 5-55

What Is the Globe Display?
The Globe display is a three-dimensional view of geospatial data capable
of mapping terrain relief or other data for an entire planet viewed from
space. Its underlying transformation maps latitude, longitude, and elevation
to a three-dimensional Cartesian frame. All Mapping Toolbox projections
transform latitudes and longitudes to map x- and y-coordinates. The globe
function is special because it can render relative relief of elevations above,
below, or on a sphere. In Earth-centered Cartesian (x,y,z) coordinates, z is not
an optional elevation; rather, it is an axis in Cartesian three-space. globe is
useful for geospatial applications that require three-dimensional relationships
between objects to be maintained, such as when one simulates flybys, and/or
views planets as they rotate.

The Globe display is based on a coordinate transformation, and is not a map
projection. While it has none of the distortions inherent in planar projections,
it is a three-dimensional model of a planet that cannot be displayed without
distortion or in its entirety. That is, in order to render the globe in a figure
window, either a perspective or orthographic transformation must be applied,
both of which necessarily involve setting a viewpoint, hiding the back side
and distortions of shape, scale, and angles.

5-47

5 Making Three-Dimensional Maps

The Globe Display Compared with the Orthographic
Projection
The following example illustrates the differences between the two-dimensional
orthographic projection, which looks spherical but is really flat, and the
three-dimensional Globe display. Use the Rotate 3D tool to manipulate the
display.

1 Load the topo data set and render it with an orthographic map projection:

load topo
axesm ortho; framem
meshm(topo,topolegend);demcmap(topo)

2 View the map obliquely:

view(3); daspectm('m',1)

3 You can view it in 3-D from any perspective, even from underneath. To
visualize this, define a geolocated data grid with meshgrat, populate it with
a constant z-value, and render it as a stem plot with stem3m:

[latgrat,longrat] = meshgrat(topo,topolegend,[20 20]);
stem3m(latgrat,longrat,500000*ones(size(latgrat)),'r')

Use the Rotate 3D tool on the figure window toolbar to change your
viewpoint. No matter how you position the view, you are looking at a disc
with stems protruding perpendicularly.

5-48

Working with the Globe Display

4 Create another figure using the Globe transform rather than orthographic
projection:

figure
axesm('globe','Geoid',earthRadius)

5 Display the topo surface in this figure and view it in 3-D:

meshm(topo,topolegend); demcmap(topo)
view(3)

6 Include the stem plot to visualize the difference in surface normals on a
sphere:

stem3m(latgrat,longrat,500000*ones(size(latgrat)),'r')

7 You can apply lighting to the display, but its location is fixed, and does not
move as the camera position is shifted:

camlight('headlight','infinite')

8 If you prefer a more unobstructed view, hide the 3-D axes:

set(gca,'Box','off')

Here is a representative view using the Globe display with the headlight.

5-49

5 Making Three-Dimensional Maps

You can use the LabelRotation property when you use the Orthographic or
any other Mapping Toolbox projection to align meridian and parallel labels
with the graticule. Because the Globe display is not a true map projection and
is handled differently internally, LabelRotation does not work with it.

For additional information on functions used in this example, see the
reference pages for view, camlight, meshgrat, and stem3m.

Using Opacity and Transparency in Globe Displays
Because Globe displays depict 3-D objects, you can see into and through
them as long as no opaque surfaces (e.g., patches or surfaces) obscure your
view. This can be particularly disorienting for point and line data, because
features on the back side of the world are reversed and can overlay features
on the front side.

Here is one way to create an opaque surface over which you can display line
and point data:

1 Create a figure and set up a Globe display:

5-50

Working with the Globe Display

figure; axesm('globe')

2 Draw a graticule in a light color, slightly raised from the surface:

gridm('GLineStyle','-','Gcolor',[.8 .7 .6],'Galtitude', .02)

3 Load and plot the coast data in black, and set up a 3-D perspective:

load coast
plot3m(lat,long,.01,'k')
view(3)
axis off; zoom(2)

4 Use the Rotate 3D tool on the figure’s toolbar to rotate the view. Note how
confusing the display is because of its transparency.

5 Make a uniform 1-by-1-degree grid and a referencing matrix for it:

base = zeros(180,360);
baseR = makerefmat('RasterSize', size(base), ...

'Latlim',[-90 90],'Lonlim',[0 360]);

5-51

5 Making Three-Dimensional Maps

6 Render the grid onto the globe, color it copper, light it from camera right,
and make the surface reflect more light:

hs = meshm(base,baseR,size(base));
colormap copper
camlight right
material([.8 .9 .4])

Note Another way to make the surface of the globe one color is to change
the FaceColor property of a displayed surface mesh (e.g., topo).

If you haven’t rotated it, the display looks like this.

When you manually rotate this map, its movement can be jerky due to the
number of vectors that must be redisplayed. In any position, however, the
copper surface effectively hides all lines on the back side of the globe.

5-52

Working with the Globe Display

Note The technique of using a uniform surface to hide rear-facing lines has
limitations for the display of patch symbolism (filled polygons). As patch
polygons are represented as planar, in three-space the interiors of large
patches can intersect the spherical surface mesh, allowing its symbolism
to show through.

Over-the-Horizon 3-D Views Using Camera
Positioning Functions
You can create dramatic 3-D views using the Globe display. The camtargm and
camposm functions (Mapping Toolbox functions corresponding to camtarget
and campos) enable you to position focal point and a viewpoint, respectively,
in geographic coordinates, so you do not need to deal with 3-D Cartesian
figure coordinates.

In this exercise, you display coastlines from the landareas shapefile over
topographic relief, and then view the globe from above Washington, D.C.,
looking toward Moscow, Russia.

1 Set up a Globe display and obtain topographic data for the map:

figure
axesm globe
load topo

2 Display topo without the vertical component (by omitting the fourth
argument to meshm):

meshm(topo, topolegend, size(topo)); demcmap(topo);

The default view is from above the North Pole with the central meridian
running parallel to the x-axis.

3 Add world coastlines from the global landareas shapefile and plot them
in light gray:

coastlines = shaperead('landareas',...
'UseGeoCoords', true, 'Attributes', {});

plotm([coastlines.Lat], [coastlines.Lon], 'Color', [.7 .7 .7])

5-53

5 Making Three-Dimensional Maps

4 Read the coordinate locations for Moscow and Washington from the
worldcities shapefile:

moscow = shaperead('worldcities',...
'UseGeoCoords', true,...
'Selector',{@(name) strcmpi(name,'Moscow'), 'Name'});

washington = shaperead('worldcities',...
'UseGeoCoords', true,...
'Selector',{@(name) strcmpi(name,'Washington D.C.'),...
'Name'});

5 Create a great circle track to connect Washington with Moscow and plot
it in red:

[latc,lonc] = track2('gc',...
moscow.Lat, moscow.Lon, washington.Lat, washington.Lon);

plotm(latc,lonc,'r')

6 Point the camera at Moscow. Wherever the camera is subsequently moved,
it always looks toward [moscow.Lat moscow.Lon]:

camtargm(moscow.Lat, moscow.Lon, 0)

7 Station the camera above Washington. The third argument is an altitude
in Earth radii:

camposm(washington.Lat, washington.Lon, 3)

8 Establish the camera up vector with the camera target’s coordinates. The
great circle joining Washington and Moscow now runs vertically:

camupm(moscow.Lat, moscow.Lon)

9 Set the field of view for the camera to 20º for the final view:

camva(20)

10 Add a light, specify a relatively nonreflective surface material, and hide
the map background:

camlight; material(0.6*[1 1 1])
hidem(gca)

5-54

Working with the Globe Display

Here is the final view.

For additional information, see the reference pages for extractm, camtargm,
camposm, camupm, Globe, and camlight.

Displaying a Rotating Globe
Because the Globe display can be viewed from any angle without the need to
recompute a projection, you can easily animate it to produce a rotating globe.
If the displayed data is simple enough, such animations can be redrawn at
relatively fast rates. In this exercise, you progressively add or replace features
on a Globe display and rotate it under the control of a MATLAB program that
resets the view to rotate the globe from west to east in one-degree increments.

1 In the Mapping Toolbox editor, create a MATLAB program file containing
the following code:

% spin.m: Rotates a view around the equator one revolution
% in 5-degree steps. Negative step makes it rotate normally
% (west-to-east).
for i=360:-5:0

view(i,23.5); % Earth's axis tilts by 23.5 degrees
drawnow

end

Save this as spin.m in your current folder or on the Mapping Toolbox path.
Note that the azimuth parameter for the figure does not have the same
origin as geographic azimuth: it is 90 degrees to the west.

5-55

5 Making Three-Dimensional Maps

2 Set up a Globe display with a graticule, as follows:

axesm('globe','Grid','on','Gcolor',[.7 .8 .9],'GlineStyle','-')

The view is from above the North Pole.

3 Show the axes, but hide the edges of the figure’s box, and view it in
perspective rather than orthographically (the default perspective):

set(gca, 'Box','off', 'Projection','perspective')

4 Spin the globe one revolution:

spin

The globe spins rapidly. The last position looks like this.

5 To make the globe opaque, create a sea-level data grid as you did for the
previous exercise, “Using Opacity and Transparency in Globe Displays”
on page 5-50:

5-56

Working with the Globe Display

base = zeros(180,360); baseref = [1 90 0];
hs = meshm(base,baseref,size(base));
colormap copper

The globe now is a uniform dark copper color with the grid overlaid.

6 Pop up the grid so it appears to float 2.5% above the surface. Prevent the
display from stretching to fit the window with the axis vis3d command:

setm(gca, 'Galtitude',0.025);
axis vis3d

7 Spin the globe again:

spin

The motion is slower, due to the need to rerender the 180-by-360 mesh: The
last frame looks like this.

5-57

5 Making Three-Dimensional Maps

8 Get ready to replace the uniform sphere with topographic relief by deleting
the copper mesh:

clmo(hs)
load topo

9 Scale the elevations to have an exaggeration of 50 (in units of Earth radii)
and plot the surface:

topo = topo / (earthRadius('km')* 20);
hs = meshm(topo,topolegend,size(topo),topo);
demcmap(topo)

5-58

Working with the Globe Display

10 Show the Earth in space; blacken the figure background, turn off the three
axes, and spin again:

set(gcf,'color','black');
axis off;
spin

Here is a representative view, showing the Himalayas rising on the Eastern
limb of the planet and the Andes on the Western limb.

11 You can apply lighting as well, which shifts as the planet rotates. Try the
following settings, or experiment with others:

5-59

5 Making Three-Dimensional Maps

camlight right
lighting phong;
material ([.7, .9, .8])

Here is the illuminated version of the preceding view:

For additional information, see the globe, camlight, and view reference
pages.

5-60

6

Customizing and Printing
Maps

• “Inset Maps” on page 6-2

• “Graphic Scales” on page 6-8

• “North Arrows” on page 6-14

• “Thematic Maps” on page 6-17

• “Using Colormaps and Colorbars” on page 6-24

• “Printing Maps to Scale” on page 6-35

6 Customizing and Printing Maps

Inset Maps
Inset maps are often used to display widely separated areas, generally at the
same scale, or to place a map in context by including overviews at smaller
scales. You can create inset maps by nesting multiple axes in a figure and
defining appropriate map projections for each. To ensure that the scale of
each of the maps is the same, use axesscale to resize them. As an example,
create an inset map of California at the same scale as the map of South
America, to relate the size of that continent to a more familiar region:

1 Begin by defining a map frame for South America using worldmap:

figure
h1 = worldmap('south america');

2 Use shaperead to read the demo world land areas polygon shapefile:

6-2

Inset Maps

land = shaperead('landareas.shp', 'UseGeoCoords', true);

3 Display the data in the map axes:

geoshow([land.Lat],[land.Lon])
setm(h1,'FFaceColor','w') % set the frame fill to white

4 Place axes for an inset in the lower middle of the map frame, and project a
line map of California:

h2 = axes('pos',[.5 .2 .1 .1]);
CA = shaperead('usastatehi', 'UseGeoCoords', true, ...

'Selector', {@(name) isequal(name,'California'), 'Name'});
usamap('california')
geoshow([CA.Lat],[CA.Lon])

6-3

6 Customizing and Printing Maps

5 Set the frame fill color and set the labels:

setm(h2,'FFaceColor','w')
mlabel; plabel; gridm % toggle off

6 Make the scale of the inset axes, h2 (California), match the scale of the
original axes, h1 (South America). Hide the map border:

axesscale(h1)
set([h1 h2], 'Visible', 'off')

6-4

Inset Maps

Note that the toolbox software chose a different projection and appropriate
parameters for each region based on its location and shape. You can
override these choices to make the two projections the same.

7 Find out what map projections are used, and then make South America’s
projection the same as California’s:

getm(h1, 'mapprojection')
ans =

eqdconic

getm(h2, 'mapprojection')
ans =

lambert

setm(h1, 'mapprojection', getm(h2, 'mapprojection'))

6-5

6 Customizing and Printing Maps

Note that the parameters for South America defaulted properly (those
appropriate for California were not used).

8 Finally, experiment with changing properties of the inset, such as its color:

setm(h2, 'ffacecolor', 'y')

6-6

Inset Maps

6-7

6 Customizing and Printing Maps

Graphic Scales
Graphic scale elements are used to provide indications of size even more
frequently than insets are. These are ruler-like objects that show distances on
the ground at the nominal scale of the projection. You can use the scaleruler
function to add a graphic scale to the current map. You can check and modify
the scaleruler settings using getm and setm. You can also move the graphic
scale to a new position by dragging its baseline.

Try this by creating a map, adding a graphic scale with the default settings,
and shifting its location. Then add a second scale in nautical miles, and
change the tick mark style and direction:

1 Use usamap to plot a map of Texas and surrounding states as filled polygons:

states = shaperead('usastatehi.shp', 'UseGeoCoords', true);
usamap('Texas')
faceColors = makesymbolspec('Polygon',...

{'INDEX', [1 numel(states)], ...
'FaceColor', polcmap(numel(states))});

geoshow(states,'DisplayType', 'polygon',...
'SymbolSpec', faceColors)

Because polcmap randomizes patch colors, your display can look different.

6-8

Graphic Scales

2 Add a default graphic scale and then move it to a new location:

scaleruler on
setm(handlem('scaleruler1'),'YLoc',.5)

The units of scaleruler default to kilometers. Note that handlem accepts
the keyword 'scaleruler' or 'scaleruler1' for the first scaleruler,
'scaleruler2' for the second one, etc. If there is more than one scaleruler
on the current axes, specifying the keyword 'scaleruler' returns a vector
of handles.

6-9

6 Customizing and Printing Maps

3 Obtain a handle to the scaleruler’s hggroup using handlem and inspect its
properties using getm:

s = handlem('scaleruler');
getm(s)
ans =

Azimuth: 0
Children: 'scaleruler1'

Color: [0 0 0]
FontAngle: 'normal'
FontName: 'Helvetica'
FontSize: 9

FontUnits: 'points'
FontWeight: 'normal'

Label: ''
Lat: 19.07296767149959

Long: 24.00830075180499
LineWidth: 0.50000000000000
MajorTick: [0 100 200 300 400 500]

MajorTickLabel: {6x1 cell}
MajorTickLength: 20

6-10

Graphic Scales

MinorTick: [0 25 50 75 100]
MinorTickLabel: '100'

MinorTickLength: 12.50000000000000
Radius: 'earth'

RulerStyle: 'ruler'
TickDir: 'up'

TickMode: 'auto'
Units: 'km'
XLoc: 0.15000000000000
YLoc: 0.50000000000000
ZLoc: []

4 Change the scaleruler’s font size to 8 points:

setm(s,'fontsize',8)

5 Place a second graphic scale, this one in units of nautical miles:

scaleruler('units','nm')

6 Modify its tick properties:

setm(handlem('scaleruler2'), 'YLoc', .48,...
'MajorTick', 0:100:300,...
'MinorTick', 0:25:50, 'TickDir', 'down',...
'MajorTickLength', km2nm(25),...
'MinorTickLength', km2nm(12.5))

6-11

6 Customizing and Printing Maps

7 Experiment with the two other ruler styles available:

setm(handlem('scaleruler1'), 'RulerStyle', 'lines')
setm(handlem('scaleruler2'), 'RulerStyle', 'patches')

6-12

Graphic Scales

6-13

6 Customizing and Printing Maps

North Arrows
The north arrow element provides the orientation of a map by pointing to
the geographic North Pole. You can use the northarrow function to display
a symbol indicating the direction due north on the current map. The north
arrow symbol can be repositioned by clicking and dragging its icon. The
orientation of the north arrow is computed, and does not need manual
adjustment no matter where you move the symbol. Ctrl+clicking the icon
creates an input dialog box with which you can change the location of the
north arrow:

1 To illustrate the use of north arrows, create a map centered at the South
Pole and add a north arrow symbol at a specified geographic position:

Antarctica = shaperead('landareas', 'UseGeoCoords', true, ...
'Selector',{@(name) strcmpi(name,{'Antarctica'}), 'Name'});

figure;
worldmap('south pole')
geoshow(Antarctica)
northarrow('latitude', -57, 'longitude', 135);

6-14

North Arrows

2 Click and drag the north arrow symbol to another corner of the map. Note
that it always points to the North Pole.

3 Drag the north arrow back to the top left corner.

4 Right-click or Ctrl+click the north arrow. The Inputs for North Arrow
dialog opens, which lets you specify the line weight, edge and fill colors,
and relative size of the arrow. Set some properties and click OK.

5 Also set some north arrow properties manually, just to get a feel for them:

h = handlem('NorthArrow');
set(h, 'FaceColor', [1.000 0.8431 0.0000],...

'EdgeColor', [0.0100 0.0100 0.9000])

6 Make three more north arrows, to show that from the South Pole, every
direction is north:

northarrow('latitude',-57,'longitude', 45);
northarrow('latitude',-57,'longitude',225);
northarrow('latitude',-57,'longitude',315);

6-15

6 Customizing and Printing Maps

Note North arrows are created as objects in the MATLAB axes (and thus
have Cartesian coordinates), not as mapping objects. As a result, if you create
more than one north arrow, any Mapping Toolbox function that manipulates
a north arrow will affect only the last one drawn.

6-16

Thematic Maps

Thematic Maps

In this section...

“What Is a Thematic Map?” on page 6-17

“Choropleth Maps” on page 6-18

“Special Thematic Mapping Functions” on page 6-20

What Is a Thematic Map?
Most published and online maps fall into four categories:

• Navigation maps, including topographic maps and nautical and
aeronautical charts

• Geophysical maps, that show the structure and dynamics of earth, oceans
and atmosphere

• Location maps, that depict the locations and names of physical features

• Thematic maps, that portray attribute data about locations and features

Although online maps often combine these categories in new and unexpected
ways, published maps and atlases tend to respect them.

Thematic maps tend to be more highly stylized than other types of maps and
frequently omit locational information such as place names, physical features,
coordinate grids, and map scales. This is because rather than showing
physical features on the ground, such as shorelines, roads, settlements,
topography, and vegetation, a thematic map displays quantified facts (a
“theme”), such as statistics for a region or sets of regions. Examples include
the locations of traffic accidents in a city, or election results by state.
Thematic maps have a wide vocabulary of cartographic symbols, such as
point symbols, dot distributions, “quiver” vectors, isolines, colored zones,
raised prisms, and continuous 3-D surfaces. Mapping Toolbox functions can
generate most of these types of map symbology.

6-17

6 Customizing and Printing Maps

Choropleth Maps
The most familiar form of thematic map is probably the choropleth map (from
the Greek choros, for place, and plethos, for magnitude). Choropleth maps use
colors or patterns to represent attributes associated with certain geographic
regions. For example, the global distribution of malaria-carrying mosquitoes
can be illustrated in a choropleth map, with the habitat of each mosquito
represented by a different color. In this example, colors are used to represent
nominal data; the categories of mosquitoes have no inherent ranking. If the
data is ordinal, rather than nominal, the map may contain a colorbar with
shades of colors representing the ranking. For instance, a map of crime rates
in different areas could show high crime areas in red, lower crime areas in
pink, and lowest crime areas in white.

Creating choropleth maps with the Mapping Toolbox is fairly straightforward.
Start with a geographic data structure; create a symbolspec to map attribute
values to face colors; and apply either geoshow or mapshow, depending on
whether you are working with latitude-longitude or pre-projected map
coordinates. The following example illustrates the process of creating a
choropleth map of population density for the six New England states in the
year 2000.

1 Set the map limits for the New England region. Import low-resolution
U.S. state boundary polygons:

MapLatLimit = [41 48];
MapLonLimit = [-74 -66];

NEstates = shaperead('usastatelo', 'UseGeoCoords', true, ...
'BoundingBox', [MapLonLimit' MapLatLimit']);

2 Set up map axes with a projection suitable to display the New England
states:

axesm('MapProjection', 'eqaconic', 'MapParallels', [],...
'MapLatLimit', MapLatLimit, 'MapLonLimit', MapLonLimit,...
'GLineStyle', '-')

3 Display the New England states:

geoshow(NEstates, 'DisplayType', 'polygon', 'FaceColor','green')

6-18

Thematic Maps

4 Identify the maximum population density for New England states:

maxdensity = max([NEstates.PopDens2000]);

5 Create an autumn colormap for the six New England states, and then use
the flipud command to invert the matrix.

fall = flipud(autumn(numel(NEstates)));

6 Make a symbol specification structure, a symbolspec, that assigns an
autumn color to each polygon according to the population density.

densityColors = makesymbolspec('Polygon', {'PopDens2000', ...
[0 maxdensity], 'FaceColor', fall});

7 Display the map.

geoshow(NEstates, 'DisplayType', 'polygon', ...
'SymbolSpec', densityColors)

title ({'Population Density in New England in 2000', ...
'in Persons per Square Mile'})

6-19

6 Customizing and Printing Maps

8 Create a colorbar.

caxis([0 maxdensity])
colormap(fall)
colorbar

9 Experiment with other colormaps. Some names of predefined colormaps
are autumn, cool, copper, gray, pink, and jet.

Special Thematic Mapping Functions
In addition to choropleth maps, other Mapping Toolbox display and symbology
functions include

Function Used For

cometm Traces (animates) vectors slowly from a comet head

comet3m Traces (animates) vectors in 3-D slowly from a comet
head

6-20

Thematic Maps

Function Used For

quiverm Plots directed vectors in 2-D from specified latitudes
and longitudes with lengths also specified as latitudes
and longitudes

quiver3m Plots directed vectors in 3-D from specified latitudes,
longitudes, and altitudes with lengths also specified as
latitudes and longitudes and altitudes

scatterm Draws fixed or proportional symbol maps for each point
in a vector with specified marker symbol. Similar maps
can be generated using geoshow and mapshow using
appropriate symbol specifications (“symbolspecs”).

stem3m Projects a 3-D stem plot map on the current map axes

The cometm and quiverm functions operate like their MATLAB counterparts
comet and quiver. The stem3m function allows you to display geographic bar
graphs. Like the MATLAB scatter function, the scatterm function allows
you to display a thematic map with proportionally sized symbols. The tissot
function calculates and displays Tissot Indicatrices, which graphically portray
the shape distortions of any map projection. For more information on these
capabilities, consult the descriptions of these functions in the reference pages.

Stem Maps
Stem plots are 3-D geographic bar graphs portraying numeric attributes at
point locations, usually on vector base maps. Below is an example of a stem
plot over a map of the continental United States. The bars could represent
anything from selected city populations to the number of units of a product
purchased at each location:

6-21

6 Customizing and Printing Maps

Contour Maps
Contour and quiver plots can be useful in analyzing matrix data. In
the following example, contour elevation lines have been drawn over a
topographical map. The region displayed is the Gulf of Mexico, obtained from
the topo matrix. Quiver plots have been added to visualize the gradient of the
topographical matrix.

Here is the displayed map:

6-22

Thematic Maps

Scatter Maps
The scatterm function plots symbols at specified point locations, like the
MATLAB scatter function. If the symbols are small and inconspicuous and
do not vary in size, the result is a dot-distribution map. If the symbols vary
in size and/or shape according to a vector of attribute values, the result is
a proportional symbol map.

6-23

6 Customizing and Printing Maps

Using Colormaps and Colorbars

In this section...

“Colormap for Terrain Data” on page 6-24

“Contour Colormaps” on page 6-27

“Colormaps for Political Maps” on page 6-29

“Labeling Colorbars” on page 6-33

“Editing Colorbars” on page 6-34

Colormap for Terrain Data
Colors and colorscales (ordered progressions of colors) are invaluable for
representing geographic variables on maps, particularly when you create
terrain and thematic maps. The following sections describe techniques and
provide examples for applying colormaps and colorbars to maps.

In previous examples, the function demcmap was used to color several digital
elevation model (DEM) topographic displays. This function creates colormaps
appropriate to rendering DEMs, although it is certainly not limited to DEMs.

These colormaps, by default, have atlas-like colors varying with elevation or
depth that properly preserve the land-sea interface. In cartography, such
color schemes are called hypsometric tints.

1 Here you explore demcmap using the topographic data for the Korean
peninsula provided in the korea data set. To set up an appropriate map
projection, pass the korea data grid and referencing vector to worldmap:

load korea
figure
worldmap(map,refvec)

2 Display the data grid with geoshow:

geoshow(map, refvec, 'DisplayType', 'mesh')

6-24

Using Colormaps and Colorbars

3 The Korea DEM is displayed using the default colormap, which is
inappropriate and causes the surface to be unrecognizable. Now apply
the default DEM colormap:

demcmap(map)

6-25

6 Customizing and Printing Maps

4 You can also make demcmap assign all altitudes within a particular range
to the same color. This results in a quasi-contour map with breaks at
a constant interval. Now color this map using the same color scheme
coarsened to display 500 meter bands:

demcmap('inc',map,500)
colorbar

Note that the first argument to demcmap, 'inc', indicates that the third
argument should be interpreted as a value range. If you prefer, you can
specify the desired number of colors with the third argument by setting the
first argument to 'size'.

6-26

Using Colormaps and Colorbars

Contour Colormaps
You can create colormaps that make surfaces look like contour maps for other
types of data besides terrain. The contourcmap function creates a colormap
that has color changes at a fixed value increment. Its required arguments are
the increment value and the name of a colormap function. Optionally, you can
also use contourcmap to add and label a colorbar similarly to the MATLAB
colorbar function:

1 Explore contourcmap by loading the world geoid data set and rendering
it with a default colormap:

load geoid
figure;
worldmap(geoid,geoidrefvec)

6-27

6 Customizing and Printing Maps

geoshow(geoid, geoidrefvec, 'DisplayType', 'surface')

2 Use contourcmap to specify a contour interval of 10 (meters), and to place a
colorbar beneath the map:

contourcmap('jet',10,'colorbar','on','location','horizontal')

3 If you want to render a restricted value range, you can enter a vector of
evenly spaced values for the first argument. Here you specify a 5-meter
interval and truncate symbology at 0 meters on the low end and 50 meters
at the high end:

contourcmap('jet',[0:5:50],...
'colorbar','on','location','horizontal')

6-28

Using Colormaps and Colorbars

Should you need to write a custom colormap function, for example, one that
has irregular contour intervals, you can easily do so, but it should have the
N-by-3 structure of MATLAB colormaps.

Colormaps for Political Maps
Political maps typically use muted, contrasting colors that make it easy to
distinguish one country from its neighbors. You can create colormaps of this
kind using the polcmap function. The polcmap function creates a colormap
with randomly selected colors of all hues. Since the colors are random, if you
don’t like the result, execute polcmap again to generate a different colormap:

1 To explore political colormaps, display the usastatelo data set as patches,
setting up the map with worldmap and plotting it with geoshow:

figure
worldmap na
states = shaperead('usastatelo', 'UseGeoCoords', true);
geoshow(states)

6-29

6 Customizing and Printing Maps

Note that the default face color is black, which is not very interesting.

2 Use polcmap to populate color definitions to a symbolspec to randomly
recolor the patches and expand the map to fill the frame:

faceColors = makesymbolspec('Polygon',...
{'INDEX', [1 numel(states)], 'FaceColor',...
polcmap(numel(states))});

geoshow(states,'SymbolSpec',faceColors)

6-30

Using Colormaps and Colorbars

3 The polcmap function can also control the number and saturation of colors.
Reissue the command specifying 256 colors and a maximum saturation of
0.2. To ensure that the colormap is always the same, reset the seed on the
MATLAB random number function using the 'state' argument with a
fixed value of your choice:

figure
worldmap na
rand('state',0)
faceColors = makesymbolspec('Polygon',...

{'INDEX', [1 numel(states)], 'FaceColor', polcmap(256,.2)});
geoshow(states, 'SymbolSpec', faceColors)

6-31

6 Customizing and Printing Maps

4 For maximum control over the colors, specify the ranges of hues,
saturations, and values. Use the same set of random color indices as before.

figure
worldmap na
rand('state',0)
faceColors = makesymbolspec('Polygon', ...

{'INDEX', [1 numel(states)], ...
'FaceColor', polcmap(256,[.2 .5],[.3 .3],[1 1]) });

geoshow(states, 'SymbolSpec', faceColors)

6-32

Using Colormaps and Colorbars

Note The famous Four Color theorem states that any political map can be
colored to completely differentiate neighboring patches using only four colors.
Experiment to find how many colors it takes to color neighbors differently
with polcmap.

Labeling Colorbars
Political maps are an example of nominal data display. Many nominal data
sets have names associated with a set of integer values, or consist of codes
that identify values that are ordinal in nature (such as low, medium, and
high). The function lcolorbar creates a colorbar having a text label aligned
with each color. Nominal colorbars are customarily used only with small
colormaps (where 10 categories or fewer are being displayed). lcolorbar has
options for orienting the colorbar and aligning text in addition to the graphic
properties it shares with axes objects.

figure; colormap(jet(5))
labels = {'apples','oranges','grapes','peaches','melons'};
lcolorbar(labels,'fontweight','bold');

6-33

6 Customizing and Printing Maps

Editing Colorbars
Maps of nominal data often require colormaps with special colors for each
index value. To avoid building such colormaps by hand, use the MATLAB
GUI for colormaps, colormapeditor, described in the MATLAB Function
Reference pages. Also see the MATLAB colormap function documentation.

6-34

Printing Maps to Scale

Printing Maps to Scale
Maps are often printed at a size that makes objects on paper a particular
fraction of their real size. The linear ratio of the mapped to real object sizes
is called map scale, and it is usually notated with a colon as “1:1,000,000” or
“1:24,000.” Another way of specifying scale is to call out the printed and real
lengths, for example “1 inch = 1 mile.”

You can specify the printed scale using the paperscale function. It modifies
the size of the printed area on the page to match the scale. If the resulting
dimensions are larger than your paper, you can reduce the amount of empty
space around the map using tightmap, zoom, or panzoom, and by changing
the axes position to fill the figure. This also reduces the amount of memory
needed to print with the zbuffer (raster image) renderer. Be sure to set
the paper scale last. For example,

set(gca,'Units','Normalized','Position',[0 0 1 1])
tightmap
paperscale(1,'in', 5,'miles')

The paperscale function also can take a scale denominator as its first and
only argument. If you want the map to be printed at 1:20,000,000, type

paperscale(2e7)

To check the size and extent of text and the relative position of axes, use
previewmap, which resizes the figure to the printed size.

previewmap

For more information on printing, see the “Printing and Exporting” section of
the MATLAB Graphics documentation.

6-35

6 Customizing and Printing Maps

6-36

7

Manipulating Geospatial
Data

For some purposes, geospatial data is fine to use as is. Sooner or later,
though, you need to extract, combine, massage, and transform geodata. This
chapter discusses some Mapping Toolbox tools and techniques provided for
such purposes.

• “Manipulating Vector Geodata” on page 7-2

• “Manipulating Raster Geodata” on page 7-31

7 Manipulating Geospatial Data

Manipulating Vector Geodata

In this section...

“Repackaging Vector Objects” on page 7-2

“Matching Line Segments” on page 7-4

“Geographic Interpolation of Vectors” on page 7-5

“Vector Intersections” on page 7-8

“Polygon Area” on page 7-11

“Overlaying Polygons with Set Logic” on page 7-12

“Cutting Polygons at the Date Line” on page 7-17

“Building Buffer Zones” on page 7-19

“Trimming Vector Data to a Rectangular Region” on page 7-21

“Trimming Vector Data to an Arbitrary Region” on page 7-24

“Simplifying Vector Coordinate Data” on page 7-25

Repackaging Vector Objects
It can be difficult to identify line or patch segments once they have been
combined into large NaN-clipped vectors. You can separate these polygon or
line vectors into their component segments using polysplit, which takes
column vectors as inputs.

Extracting and Joining Polygons or Line Segments

1 Enter two NaN-delimited arrays in the form of column vectors:

lat = [45.6 -23.47 78 NaN 43.9 -67.14 90 -89]';
long = [13 -97.45 165 NaN 0 -114.2 -18 0]';

2 Use polysplit to create two cell arrays, latc and lonc:

[latc,lonc] = polysplit(lat,long)

latc =

7-2

Manipulating Vector Geodata

[3x1 double] [4x1 double]
lonc =

[3x1 double] [4x1 double]

3 Inspect the contents of the cell arrays:

[latc{1} lonc{1}]
[latc{2} lonc{2}]

ans =
45.6 13

-23.47 -97.45
78 165

ans =
43.9 0

-67.14 -114.2
90 -18

-89 0

Note that each cell array element contains a segment of the original line.

4 To reverse the process, use polyjoin:

[lat2,lon2] = polyjoin(latc,lonc);

5 The joined segments are identical with the initial lat and lon arrays:

[lat long] == [lat2 lon2]

ans =
1 1
1 1
1 1
0 0
1 1
1 1
1 1
1 1

The logical comparison is false for the NaN delimiters, by definition.

7-3

7 Manipulating Geospatial Data

6 You can test for global equality, including NaNs, as follows:

isequalwithequalnans(lat,lat2) & isequalwithequalnans(long,lon2)

ans =
1

See the polysplit and polyjoin reference pages for further information.

Matching Line Segments
A common operation on sets of line segments is the concatenation of segments
that have matching endpoints. The polymerge command compares endpoints
of segments within latitude and longitude vectors to identify endpoints that
match exactly or lie within a specified distance. The matching segments are
then concatenated, and the process continues until no more coincidental
endpoints can be found. The two required arguments are a latitude (x) vector
and a longitude (y) vector. The following exercise shows this process at work.

Linking Line Segments into Polygons

1 Construct column vectors representing coordinate values:

lat = [3 2 NaN 1 2 NaN 5 6 NaN 3 4]';
lon = [13 12 NaN 11 12 NaN 15 16 NaN 13 14]';

2 Concatenate the segments that match exactly:

[latm,lonm] = polymerge(lat,lon);
[latm lonm]

ans =

1 11
2 12
3 13
4 14

NaN NaN
5 15
6 16

7-4

Manipulating Vector Geodata

NaN NaN

The original four segments are merged into two segments.

The polymerge function takes an optional third argument, a (circular)
distance tolerance that permits inexact matching. A fourth argument enables
you to specify whether the function outputs vectors or cell arrays. See the
polymerge reference page for further information.

Geographic Interpolation of Vectors
When using vector data, remember that, like raster data, coordinates are
sampled measurements. This involves unavoidable assumptions concerning
what the geographic reality is between specified data points. The normal
assumption when plotting vector data requires that points be connected
with straight line segments, which essentially indicates a lack of knowledge
about conditions between the measured points. For lines that are by nature
continuous, such as most rivers and coastlines, such piecewise linear
interpolation can be false and misleading, as the following figure depicts.

���
���%���
�

������-
��%���
�

���
������
�
������

������������	���
���	�����	��	������	��	������

Interpolating Sparse Vector Data

Despite the possibility of misinterpretation, circumstances do exist in which
geographic data interpolation is useful or even necessary. To do this, use the
interpm function to interpolate between known data points. One value of
linearly interpolating points is to fill in lines of constant latitude or longitude
(e.g., administrative boundaries) that can curve when projected.

7-5

7 Manipulating Geospatial Data

Interpolating Vectors to Achieve a Minimum Point Density
This example interpolates values in a set of latitude and longitude points to
have no more than one degree of separation in either direction.

1 Define two fictitious latitude and longitude data vectors:

lats = [1 2 4 5]; longs = [1 3 4 5];

2 Specify a densification parameter of 1 (the default unit is degrees):

maxdiff = 1;

3 Call interpm to fill in any gaps greater than 1º in either direction:

[newlats,newlongs] = interpm(lats,longs,maxdiff)

newlats =
1.0000
1.5000
2.0000
3.0000
4.0000
5.0000

newlongs =
1.0000
2.0000
3.0000
3.5000
4.0000
5.0000

In lats, a gap of 2º exists between the values 2 and 4. A linearly
interpolated point, (3,3.5) was therefore inserted in newlats and
newlongs. Similarly, in longs, a gap of 2º exists between the 1 and the 3.
The point (1.5, 2) was therefore interpolated and placed into newlats
and newlongs. Now, the separation of adjacent points is no greater than
maxdiff in either newlats or newlongs.

See the interpm reference page for further information.

7-6

Manipulating Vector Geodata

Interpolating Coordinates at Specific Locations
interpm returns both the original data and new linearly interpolated points.
Sometimes, however, you might want only the interpolated values. The
functions intrplat and intrplon work similarly to the MATLAB interp1
function, and give you control over the method used for interpolation. Note
that they only interpolate and return one value at a time.

Use intrplat to interpolate a latitude for a given longitude. Given a
monotonic set of longitudes and their matching latitude points, you can
interpolate a new latitude for a longitude you specify, interpolating along
linear, spline, cubic, rhumb line, or great circle paths. The longitudes must
increase or decrease monotonically. If this is not the case, you might be able
to use the intrplon companion function if the latitude values are monotonic.

Interpolate a latitude corresponding to a longitude of 7.3º in the following
data in a linear, great circle, and rhumb line sense:

1 Define some fictitious latitudes and longitudes:

longs = [1 3 4 9 13]; lats = [57 68 60 65 56];

2 Specify the longitude for which to compute a latitude:

newlong = 7.3;

3 Generate a new latitude with linear interpolation:

newlat = intrplat(longs,lats,newlong,'linear')

newlat =
63.3000

4 Generate the latitude using great circle interpolation:

newlat = intrplat(longs,lats,newlong,'gc')

newlat =
63.5029

5 Generate it again, specifying interpolation along a rhumb line:

7-7

7 Manipulating Geospatial Data

newlat = intrplat(longs,lats,newlong,'rh')

newlat =
63.3937

The following diagram illustrates these three types of interpolation. The
intrplat function also can perform spline and cubic spline interpolations.

+%	�6����
������	�
�/�70,8129
$�
������
������	�
�/�70,090:
;��
��������	�
�/�70,0111

&78<5�9<'

&71<5�=<' &;�����	�
�/�:,0<'

As mentioned above, the intrplon function provides the capability to
interpolate new longitudes from a given set of longitudes and monotonic
latitudes.

See the intrplat and intrplon reference pages for further information.

Vector Intersections
A set of Mapping Toolbox functions perform intersection calculations on
vector data computed by the toolbox, which include great and small circles
as well as rhumb line tracks. The functions also determine intersections of
arbitrary vector data.

Compute the intersection of a small circle centered at (0º,0º) with a radius of
1250 nautical miles and a small circle centered at (5ºN,30ºE) with a radius of
2500 kilometers:

[lat,long] = scxsc(0,0,nm2deg(1250),5,30,km2deg(2500))

7-8

Manipulating Vector Geodata

lat =
17.7487 -12.9839

long =
11.0624 16.4170

.281���

2811�>�

&1<5�1<'

&8<?5�01<@'

&.:,:<?5�..,.<@'

&.0,1<?5�.7,=<@'

In general, small circles intersect twice or never. For the case of exact
tangency, scxsc returns two identical intersection points. Other similar
commands include rhxrh for intersecting rhumb lines, gcxgc for intersecting
great circles, and gcxsc for intersecting a great circle with a small circle.

Imagine a ship setting sail from Norfolk, Virginia (37ºN,76ºW), maintaining
a steady due-east course (90º), and another ship setting sail from Dakar,
Senegal (15ºN,17ºW), with a steady northwest course (315º). Where would
the tracks of the two vessels cross?

[lat,long] = rhxrh(37,-76,90,15,-17,315)

lat =
37

7-9

7 Manipulating Geospatial Data

long =
-41.7028

The intersection of the tracks is at (37ºN,41.7ºW), which is roughly 600
nautical miles west of the Azores in the Atlantic Ocean.

You can also compute the intersection points of arbitrary vectors of latitude
and longitude. The polyxpoly command finds the segments that intersect
and interpolates to find the intersection points. The interpolation is done
linearly, as if the points were in a Cartesian x-y coordinate system. The
polyxpoly command can also identify the line segment numbers associated
with the intersections:

[xint,yint] = polyxpoly(x1,y1,x2,y2);

7-10

Manipulating Vector Geodata

If the spacing between points is large, there can be some difference between
the intersection points computed by polyxpoly and the intersections shown
on a map display. This is a result of the difference between straight lines in
the unprojected and projected coordinates. Similarly, there can be differences
between the polyxpoly result and intersections assuming great circles or
rhumb lines between points.

Polygon Area
Use the function areaint to calculate geographic areas for vector data in
polygon format. The function performs a numerical integration using Green’s
Theorem for the area on a surface enclosed by a polygon. Because this is a
discrete integration on discrete data, the results are not exact. Nevertheless,
the method provides the best means of calculating the areas of arbitrarily
shaped regions. Better measures result from better data.

The Mapping Toolbox function areaint (for area by integration), like the
other area functions, areaquad and areamat, returns areas as a fraction of
the entire planet’s surface, unless a radius is provided. Here you calculate
the area of the continental United States using the conus MAT-file. Three
areas are returned, because the data contains three polygons: Long Island,
Martha’s Vineyard, and the rest of the continental U.S.:

load conus
earthradius = earthRadius('km');

7-11

7 Manipulating Geospatial Data

area = areaint(uslat,uslon,earthradius)

area =
1.0e+06 *

7.9256
0.0035
0.0004

Because the default Earth radius is in kilometers, the area is in square
kilometers. From the same variables, the areas of the Great Lakes can be
calculated, this time in square miles:

load conus
earthradius = earthRadius('miles');
area = areaint(gtlakelat,gtlakelon,earthradius)

area =
1.0e+004 *

8.0119
1.0381
0.7634

Again, three areas are returned, the largest for the polygon representing
Superior, Michigan, and Huron together, the other two for Erie and Ontario.

Overlaying Polygons with Set Logic
Polygon set operations are used to answer a variety of questions about logical
relationships of vector data polygon objects. Standard set operations include
intersection, union, subtraction, and an exclusive OR operation. The polybool
function performs these operations on two sets of vectors, which can represent
x-y or latitude-longitude coordinate pairs. In computing points where
boundaries intersect, interpolations are carried out on the coordinates as if
they were planar. Here is an example that shows all the available operations.

7-12

Manipulating Vector Geodata

Intersection Union

Exclusive Or Subtraction

The result is returned as NaN-clipped vectors by default. In cases where it
is important to distinguish outer contours of polygons from interior holes,
polybool can also accept inputs and return outputs as cell arrays. In the
cell array format, a cell array entry starts with the list of points making up
the outer contour. Subsequent NaN-clipped faces within the cell entry are
interpreted as interior holes.

Overlaying Polygons with the polybool Function
The following exercise demonstrates how you can use polybool:

1 Construct a twelve-sided polygon:

7-13

7 Manipulating Geospatial Data

theta = -(0:pi/6:2*pi)';
lat1 = sin(theta);
lon1 = cos(theta);

2 Construct a triangle that overlaps it:

lat2 = [0 1 -1 0]';
lon2 = [0 2 2 0]';

3 Plot the two shapes together with blue and red lines:

axesm miller
plotm(lat1,lon1,'b')
plotm(lat2,lon2,'r')

4 Compute the intersection polygon and plot it as a green patch:

[loni,lati] = polybool('intersection',lon1,lat1,lon2,lat2);
[lati loni]
geoshow(lati,loni,'DisplayType','polygon','FaceColor','g')

ans =
0 1.0000

-0.4409 0.8819
0 0

0.4409 0.8819
0 1.0000

5 Compute the union polygon and plot it as a magenta patch:

[lonu,latu] = polybool('union',lon1,lat1,lon2,lat2);
[latu lonu]
geoshow(latu,lonu,'DisplayType','polygon','FaceColor','m')

ans =
-1.0000 2.0000
-0.4409 0.8819
-0.5000 0.8660
-0.8660 0.5000
-1.0000 0.0000
-0.8660 -0.5000

7-14

Manipulating Vector Geodata

-0.5000 -0.8660
0 -1.0000

0.5000 -0.8660
0.8660 -0.5000
1.0000 -0.0000
0.8660 0.5000
0.5000 0.8660
0.4409 0.8819
1.0000 2.0000

-1.0000 2.0000

6 Compute the exclusive OR polygon and plot it as a yellow patch:

[lonx,latx] = polybool('xor',lon1,lat1,lon2,lat2);
[latx lonx]
geoshow(latx,lonx,'DisplayType','polygon','FaceColor','y')

ans =
-1.0000 2.0000
-0.4409 0.8819
-0.5000 0.8660
-0.8660 0.5000
-1.0000 0.0000
-0.8660 -0.5000
-0.5000 -0.8660

0 -1.0000
0.5000 -0.8660
0.8660 -0.5000
1.0000 -0.0000
0.8660 0.5000
0.5000 0.8660
0.4409 0.8819
1.0000 2.0000

-1.0000 2.0000
NaN NaN

0.4409 0.8819
0 0

-0.4409 0.8819
0 1.0000

0.4409 0.8819

7-15

7 Manipulating Geospatial Data

7 Subtract the triangle from the 12-sided polygon and plot the resulting
concave polygon as a white patch:

[lonm,latm] = polybool('minus',lon1,lat1,lon2,lat2);
[latm lonm]
geoshow(latm,lonm,'DisplayType','polygon','FaceColor','w')

ans =
0.8660 0.5000
0.5000 0.8660
0.4409 0.8819

0 0
-0.4409 0.8819
-0.5000 0.8660
-0.8660 0.5000
-1.0000 0.0000
-0.8660 -0.5000
-0.5000 -0.8660

0 -1.0000
0.5000 -0.8660
0.8660 -0.5000
1.0000 -0.0000
0.8660 0.5000

The final set of colored shapes is shown below.

7-16

Manipulating Vector Geodata

See the polybool reference page for further information.

Cutting Polygons at the Date Line
Polygon set operations treat input vectors as plane coordinates. The
polyxpoly function can be confused by geographic data that has
discontinuities in longitude coordinates at date-line crossings. This can
happen when points with longitudes near 180º connect to points with
longitudes near -180º, as might be the case for eastern Siberia and Antarctica,
and also for small circles and other patch objects generated by toolbox
functions.

You can prepare such geographic data for use with polybool or for patch
rendering by cutting the polygons at the date line with the flatearthpoly
function. The result of flatearthpoly is a polygon with points inserted to
follow the date line up to the pole, traverse the longitudes at the pole, and
return to the date line crossing along the other edge of the date line.

Removing Discontinuities from a Small Circle

1 Create an orthographic view of the Earth and plot coast on it:

axesm ortho
setm(gca,'Origin', [60 170]); framem on; gridm on

7-17

7 Manipulating Geospatial Data

load coast
plotm(lat, long)

2 Generate a small circle that encompasses the North Pole and color it yellow:

[latc,lonc] = scircle1(75,45,30);
patchm(latc,lonc,'y')

3 Flatten the small circle with flatearthpoly:

[latf,lonf] = flatearthpoly(latc,lonc);

4 Plot the cut circle that you just generated as a magenta line:

plotm(latf,lonf,'m')

5 Generate a second small circle that does not include a pole:

[latc1 lonc1] = scircle1(20, 170, 30);

6 Flatten it and plot it as a red line:

[latf1,lonf1] = flatearthpoly(latc1,lonc1);
plotm(latf1,lonf1,'r')

The following figure shows the result of these operations. Note that the
second small circle, which does not cover a pole, has been clipped into two
pieces along the date line. On the right, the polygon for the first small circle
is plotted in plane coordinates to illustrate its flattened shape.

7-18

Manipulating Vector Geodata

The flatearthpoly function assumes that the interior of the polygon being
flattened is in the hemisphere that contains most of its edge points. Thus a
polygon produced by flatearthpoly does not cover more than a hemisphere.

Note As this figure illustrates, you do not need to use flatearthpoly to
prepare data for a map display. The Mapping Toolbox display functions
automatically cut and trim geographic data if required by the map projection.
Use this function only when conducting set operations on polygons.

See the flatearthpoly reference page for further information.

Building Buffer Zones
A buffer zone is the area within a specified distance of a map feature. For
vector geodata, buffer zones are constructed as polygons. For raster geodata,
buffer zones are collections of contiguous, identically coded grid cells. When
the feature is a polygon, a buffer zone can be defined as the locus of points
within a certain distance of its boundary, either inside or outside the polygon.
A buffer zone for a linear object is the locus of points a certain distance away
from it. Buffer zones form equidistant contour lines around objects.

7-19

7 Manipulating Geospatial Data

The bufferm function computes and returns vectors that represent a set of
points that define a buffer zone. It forms the buffer by placing small circles at
the vertices of the polygon and rectangles along each of its line segments, and
applying a polygon union set operation to these objects.

Generating a Buffer Around a Polygon
Demonstrate bufferm using a polygon representing the Island of Madagascar
that you extract from the landareas data set. The boundary of Madagascar
is passed to bufferm as latitude and longitude vectors. Using this data,
compute a buffer zone at a distance of 0.75 degrees in from the boundaries of
Madagascar:

1 Create a base map of the area surrounding Madagascar:

ax = worldmap('madagascar');
madagascar = shaperead('landareas',...

'UseGeoCoords', true,...
'Selector', {@(name)strcmpi(name,'Madagascar'), 'Name'});

geoshow(ax, madagascar)

7-20

Manipulating Vector Geodata

2 Use bufferm to process the polygon and output a buffer zone .75 degrees
inland:

[latb,lonb] = bufferm(madagascar.Lat, madagascar.Lon, .75, 'in');

3 Show the buffer zone in green:

geoshow(latb, lonb, 'DisplayType', 'polygon', 'FaceColor', 'green')

Trimming Vector Data to a Rectangular Region
It is not unusual for vector data to extend beyond the geographic region
currently of interest. For example, you might have coastline data for the
entire world (such as the coast data set), but are interested in mapping
Australia only. In this and other situations, you might want to eliminate
unnecessary data from the workspace and from calculations in order to save
memory or to speed up processing and display.

Line data and patch data need to be trimmed differently. You can trim line
data by simply removing points outside the region of interest by clipping lines

7-21

7 Manipulating Geospatial Data

at the map frame or to some other defined region. Patch data requires a more
complicated method to ensure that the patch objects are correctly formed.

For the vector data, two functions are available to achieve this. If the vectors
are to be handled as line data, the maptriml function returns variables
containing only those points that lie within the defined region. If, instead,
you want to maintain polygon format, use the maptrimp function. Be aware,
however, that patch-trimmed data is usually larger and more expensive to
compute.

Note When drawing maps, Mapping Toolbox display functions automatically
trim vector geodata to the region specified by the frame limits (FLatLimit and
FLonLimit map axes properties) for azimuthal projections, or to frame or map
limits (MapLatLimit and MapLonLimit map axes properties) for nonazimuthal
projections. The trimming is done internally in the display routine, keeping
the original data intact. For further information on trimming vector geodata,
see “Axes for Drawing Maps” on page 4-12, along with the reference pages
for the trimming functions.

Trimming Vectors to Form Lines and Polygons

1 Load the coast MAT-file for the entire world:

load coast

2 Define a region of interest centered on Australia:

latlim = [-50 0]; longlim = [105 160];

3 Use maptriml to delete all data outside these limits, producing line vectors:

[linelat,linelong] = maptriml(lat,long,latlim,longlim);

4 Do this again, but use maptrimp to produce polygon vectors:

[polylat,polylong] = maptrimp(lat,long,latlim,longlim);

5 See how much data has been reduced:

7-22

Manipulating Vector Geodata

whos

Name Size Bytes Class

lat 9589x1 76712 double
latlim 1x2 16 double
linelat 870x1 6960 double
linelong 870x1 6960 double
long 9589x1 76712 double
longlim 1x2 16 double
polylat 878x1 7024 double
polylong 878x1 7024 double

Note that the clipped data is only 10% as large as the original data set.

6 Plot the trimmed patch vectors on a Miller projection:

axesm('MapProjection', 'miller', 'Frame', 'on',...
'FlatLimit', latlim, 'FlonLimit', longlim)
patchesm(polylat, polylong, 'c')

7 Plot the trimmed line vectors to see that they conform to the patches:

plotm(linelat, linelong, 'm')

7-23

7 Manipulating Geospatial Data

See the maptriml and maptrimp reference pages for further information.

Trimming Vector Data to an Arbitrary Region
Often a set of data contains unwanted data mixed in with the desired values.
For example, your data might include vectors covering the entire United
States, but you only want to work with those falling in Alabama. Sometimes a
data set contains noise—perhaps three or four points out of several thousand
are obvious errors (for example, one of your city points is in the middle of the
ocean). In such cases, locating outliers and errors in the data arrays can
be quite tedious.

The filterm command uses a data grid to filter a vector data set. Its calling
sequence is as follows:

[flats,flons] = filterm(lats,lons,grid,refvector,allowed)

7-24

Manipulating Vector Geodata

Each location defined by lats and lons is mapped to a cell in grid, and the
value of that grid cell is obtained. If that value is found in allowed, that point
is output to flats and flons. Otherwise, the point is filtered out.

The grid might encode political units, and the allowed values might be the
code or codes indexing certain states or countries (e.g., Alabama). The grid
might also be real-valued (e.g., terrain elevations), although it could be
awkward to specify all the values allowed. More often, logical or relational
operators give better results for such grids, enabling the allowed value to be 1
(for true). For example, you could use this transformation of the topo grid:

[flats,flons] = filterm(lats,lons,double(topo>0),topolegend,1)

The output would be those points in lats and lons that occupy dry land
(mostly because some water bodies are above sea level).

For further information, see the filterm reference page. Also see “Data Grids
as Logical Variables” on page 7-39.

Simplifying Vector Coordinate Data
Avoiding visual clutter in composing maps is an essential part of cartographic
presentation. In cartography, this is described as map generalization,
which involves coordinating many techniques, both manual and automated.
Limiting the number of points in vector geodata is an important part of
generalizing maps, and is especially useful for conditioning cartographic
data, plotting maps at small scales, and creating versions of geodata for use
at small scales.

An easy, but naive, approach to point reduction is to discard every nth
element in each coordinate vector (simple decimation). However, this can
result in poor representations of the original shapes. The toolbox provides a
function to eliminate insignificant geometric detail in linear and polygonal
objects, while still maintaining accurate representations of their shapes.
The reducem function implements a powerful line simplification algorithm
(known as Douglas-Peucker) that intelligently selects and deletes visually
redundant points.

The reducem function takes latitude and longitude vectors, plus an optional
linear tolerance parameter as arguments, and outputs reduced (simplified)

7-25

7 Manipulating Geospatial Data

versions of the vectors, in which deviations perpendicular to local “trend lines”
in the vectors are all greater than the tolerance criterion. Endpoints of vectors
are preserved. Optional outputs are an error measure and the tolerance value
used (it is computed when you do not supply a value).

Note Simplified line data might not always be appropriate for display. If all
or most intermediate points in a feature are deleted, then lines that appear
straight in one projection can be incorrectly displayed as straight lines in
others, and separate lines can be caused to intersect. In addition, when you
are reducing data over large world regions, the effective degree of reduction
near the poles are less than that achieved near the equator, due to the fact
that the algorithm treats geographic coordinates as if they were planar.

Using reducem to Simplify Lines
The reducem function works on both patch and line data. Getting results that
look right at an intended scale might require some experimentation with the
tolerance parameter. The best way to proceed might be to allow the tolerance
to default, and have reducem return the tolerance it computed as the fourth
return argument. If the output still has too much detail, then double the
tolerance and try again. Similarly, if the output lines do not have enough
detail, halve the tolerance and try again. You can also use the third return
parameter, which indicates the percentage of line length that was eliminated
by reduction, as a guide to achieve consistent simplification results, although
this parameter is sensitive to line geometry and thus can vary by feature type.

To demonstrate the use of reducem, this example extracts the outline of the
state of Massachusetts from the usastatehi high-resolution shapefile:

1 Read Massachusetts data from the shapefile. Use the Selector parameter
to read only the vectors representing the Massachusetts state boundaries:

ma = shaperead('usastatehi.shp',...
'UseGeoCoords', true,...
'Selector', {@(name)strcmpi(name,'Massachusetts'), 'Name'});

2 Extract the coordinate data for simplification. There are 957 points to
begin with:

7-26

Manipulating Vector Geodata

maLat = ma.Lat;
maLon = ma.Lon;
numel(maLat)

ans =
957

3 Use reducem to simplify the boundary vectors, and inspect the results:

[maLat1, maLon1, cerr, tol] = reducem(maLat', maLon');
numel(maLat1)

ans =
252

4 The number of points used to represent the boundary has dropped from 958
to 253. Compute the degree of reduction:

numel(maLat1)/numel(maLat)

ans =
0.2633

The vectors have been reduced to about a quarter of their original size
using the default tolerance.

5 Examine the error and tolerance values returned by reducem:

[cerr tol]

ans =
0.0331 0.0060

The cerr value says that only 3.3% of total boundary length was eliminated
(despite removing 74% of the points). The tolerance that achieved this was
computed by reducem as 0.006 decimal degrees, or about 0.66 km.

7-27

7 Manipulating Geospatial Data

6 Use geoshow to plot the reduced outline in red over the original outline
in blue:

figure
axesm('MapProjection', 'eqdcyl', 'FlatLim', [41.1 43.0],...
'FlonLim', [-69.8, -73.6], 'Frame', 'off', 'Grid', 'off');
geoshow(maLat, maLon, 'DisplayType', 'line', 'color', 'blue')
geoshow(maLat1, maLon1, 'DisplayType', 'line', 'color', 'red')

Differences in details are not apparent unless you zoom in two or three
times; click the Zoom tool to explore the map.

7 Double the tolerance, and reduce the original boundary into new variables:

[maLat2,maLon2,cerr2,tol2] = reducem(maLat', maLon', 0.012);

8 Repeat step 3 with new data and plot it in dark green:

numel(maLat2)/numel(maLat)

ans =
0.1641

[cerr2 tol2]

ans =
0.0517 0.0120

geoshow(maLat2, maLon2, 'DisplayType', 'line', 'color', [0 .6 0])

Now you have removed 84% of the points, and 5.2% of total length.

9 Repeat one more time, raising the tolerance to 0.1 degrees, and plot the
result in black:

[maLat3, maLon3, cerr3, tol3] = reducem(maLat', maLon', 0.1);
geoshow(maLat3, maLon3, 'DisplayType', 'line', 'color', 'black')

As overlaid with the original data, the reduced state boundaries look like
this.

7-28

Manipulating Vector Geodata

As this example and the composite map below demonstrate, the visual
effects of point reduction are subtle, up to a point. Most of the vertices can
be eliminated before the effects of line simplification are very noticeable.
Experimentation is usually required, because the visual effects a given value
for a tolerance yield depend on the degrees and types of line complexity, and
they are often nonlinear with respect to tolerance values. Also, the extent of
line detail reduction should be informed by the purpose of the map and the
scale at which it is to be displayed.

Note This exercise generalized a set of disconnected patches. When patches
are contiguous (such as the U.S. state outlines), using reducem can result in
inconsistencies in boundary representation and gaps at points where states
meet. For best results, reducem should be applied to line data.

7-29

7 Manipulating Geospatial Data

No reduction
957 points (100%)

 73° W 72° W 71° W 70° W

 41.5° N

 42.0° N

 42.5° N

Tol: 0.006 degTol: 0.006 deg.
252 points (26%)

 73° W 72° W 71° W 70° W

 41.5° N

 42.0° N

 42.5° N

Tol: 0.012 deg
157 points (16%)

 73° W 72° W 71° W 70° W

 41.5° N

 42.0° N

 42.5° N

Tol: 0.100 deg
32 points (3%)

 73° W 72° W 71° W 70° W

 41.5° N

 42.0° N

 42.5° N

See the reducem reference page for further information.

7-30

Manipulating Raster Geodata

Manipulating Raster Geodata

In this section...

“Vector-to-Raster Data Conversion” on page 7-31

“Data Grids as Logical Variables” on page 7-39

“Data Grid Values Along a Path” on page 7-41

“Data Grid Gradient, Slope, and Aspect” on page 7-43

Vector-to-Raster Data Conversion
You can convert latitude-longitude vector data to a grid at any resolution you
choose to make a raster base map or grid layer. Certain Mapping Toolbox
GUI tools help you do some of this, but you can also perform vector-to-raster
conversions from the command line. The principal function for gridding vector
data is vec2mtx, which allocates lines to a grid of any size you indicate,
marking the lines with 1s and the unoccupied grid cells with 0s. The grid
contains doubles, but if you want a logical grid (see “Data Grids as Logical
Variables” on page 7-39, below) cast the result to be a logical array.

If the vector data consists of polygons (patches), the gridded outlines are
all hollow. You can differentiate them using the encodem function, calling
it with an array of rows, columns, and seed values to produce a new grid
containing polygonal areas filled with the seed values to replace the binary
values generated by vec2mtx.

Creating Data Grids from Vector Data
To demonstrate vector-to-raster data conversion, use patch data for Indiana
from the usastatehi shapefile:

1 Use shaperead to get the patch data for the boundary:

indiana = shaperead('usastatehi.shp',...
'UseGeoCoords', true,...
'Selector', {@(name)strcmpi('Indiana',name), 'Name'});

inLat = indiana.Lat;
inLon = indiana.Lon;

7-31

7 Manipulating Geospatial Data

2 Set the grid density to be 40 cells per degree, and use vec2mtx to rasterize
the boundary and generate a referencing vector for it:

gridDensity = 40;
[inGrid, inRefVec] = vec2mtx(inLat, inLon, gridDensity);
whos

Name Size Bytes Class

gridDensity 1x1 8 double
inGrid 164x137 179744 double
inLat 1x626 5008 double
inLon 1x626 5008 double
inRefVec 1x3 24 double
indiana 1x1 10960 struct

The resulting grid contains doubles, and has 80 rows and 186 columns.

3 Make a map of the data grid in contrasting colors:

figure
axesm eqdcyl
meshm(inGrid, inRefVec)
colormap jet(4)

7-32

Manipulating Raster Geodata

4 Set up the map limits:

[latlim, lonlim] = limitm(inGrid, inRefVec);
setm(gca, 'Flatlimit', latlim, 'FlonLimit', lonlim)
tightmap

7-33

7 Manipulating Geospatial Data

5 To fill (recode) the interior of Indiana, you need a seed point (which must
be identified by row and column) and a seed value (to be allocated to all
cells within the polygon). Select the middle row and column of the grid and
choose an index value of 3 to identify the territory when calling encodem to
generate a new grid:

inPt = round([size(inGrid)/2, 3]);
inGrid3 = encodem(inGrid, inPt,1);

The last argument (1) identifies the code for boundary cells, where filling
should halt.

6 Clear and redraw the map using the filled grid:

meshm(inGrid3, inRefVec)

7-34

Manipulating Raster Geodata

7 Plot the original vectors on the grid to see how well data was rasterized:

plotm(inLat, inLon,'k')

The resulting map is shown on the left below. Use the Zoom tool on
the figure window to examine the gridding results more closely, as the
right-hand figure shows.

7-35

7 Manipulating Geospatial Data

See the vec2mtx and encodem reference pages for further information. imbedm
is a related function for gridding point values.

Using a GUI to Rasterize Polygons
In the previous example, had you wanted to include the states that border
Indiana, you could also have extracted Illinois, Kentucky, Ohio, and Michigan,
and then deleted unwanted areas of these polygons using maptrimp (see
“Trimming Vector Data to a Rectangular Region” on page 7-21 for specific
details on its use). Use the seedm function with seed points found using the
getseeds GUI to fill multiple polygons after they are gridded:

1 Extract the data for Indiana and its neighbors by passing their names in
a cell array to shaperead:

pcs = {'Indiana', 'Michigan', 'Ohio', 'Kentucky', 'Illinois'};

centralUS = shaperead('usastatelo.shp',...
'UseGeoCoords', true,...
'Selector',{@(name)any(strcmpi(name,pcs),2), 'Name'});

7-36

Manipulating Raster Geodata

meLat = [centralUS.Lat];
meLon = [centralUS.Lon];

2 Rasterize the trimmed polygons at a 1-arc-minute resolution (60 cells per
degree), also producing a referencing vector:

[meGrid, meRefVec] = vec2mtx(meLat, meLon, 60);

3 Set up a map figure and display the binary grid just created:

figure
axesm eqdcyl
geoshow(meLat, meLon, 'Color', 'r');
meshm(meGrid, meRefVec)
colormap jet(8)

4 Use getseeds to interactively pick seed points for Indiana, Michigan, Ohio,
Kentucky, and Illinois, in that order:

[row,col,val] = getseeds(meGrid, meRefVec, 5, [3 4 5 6 7]);
[row col val]

7-37

7 Manipulating Geospatial Data

ans =
207 140 3
219 326 4
212 506 5
56 459 6

393 433 7

The MATLAB prompt returns after you pick five locations in the figure
window. As you chose them yourself, your row and col numbers will differ.

5 Use encodem to fill each country with a unique value, producing a new grid:

meGrid5 = encodem(meGrid, [row col val], 1);

6 Clear the display and display meGrid5 to see the result:

clma
meshm(meGrid5, meRefVec)

The rasterized map of Indiana and its neighbors is shown below.

7-38

Manipulating Raster Geodata

See the getseeds reference page for more information. The maptrim and
seedm GUI tools are also useful in this context.

Data Grids as Logical Variables
You can apply logical criteria to numeric data grids to create logical grids.
Logical grids are data grids consisting entirely of 1s and 0s. You can create
them by performing logical tests on data grid variables. The resulting binary
grid is the same size as the original grid(s) and can use the same referencing
vector, as the following hypothetical data operation illustrates:

logicalgrid = (realgrid > 0);

This transforms all values greater than 0 into 1s and all other values to 0s.
You can apply multiple conditions to a grid in one operation:

logicalgrid = (realgrid >- 100)&(realgrid < 100);

If several grids are the same size and share the same referencing vector (i.e.,
the grids are co-registered), you can create a logical grid by testing joint
conditions, treating the individual data grids as map layers:

logicalgrid = (population > 10000)&(elevation < 400)&...
(country == nigeria);

Several Mapping Toolbox functions enable the creation of logical grids using
logical and relational operators. Grids resulting from such operations contain
logical rather than numeric values (which reduce storage by a factor of 8), but
might need to be cast to double in order to be used in certain functions. Use
the onem and zerom functions to create grids of all 1s and all 0s.

Obtaining the Area Occupied by a Logical Grid Variable
You can analyze the results of logical grid manipulations to determine the
area satisfying one or more conditions (either coded as 1s or an expression
that yields a logical value of 1). The areamat function can provide the
fractional surface area on the globe associated with 1s in a logical grid. Each
grid element is a quadrangle, and the sum of the areas meeting the logical
condition provides the total area:

7-39

7 Manipulating Geospatial Data

1 You can use the topo grid and the greater-than relational operator to
determine what fraction of the Earth lies above sea level:

load topo
topoR = makerefmat('RasterSize', size(topo), ...

'Latlim', [-90 90], 'Lonlim', [0 360]);
a = areamat((topo > 0),topoR)

a =
0.2890

The answer is about 30%. (Note that land areas below sea level are
excluded.)

2 You can include a planetary radius in specified units if you want the result
to have those units. Here is the same query specifying units of square
kilometers:

a = areamat((topo > 0),topoR,earthRadius('km'))

a =
1.4739e+08

3 Use the usamtx data grid codes to find the area of a specific state within
the U.S.A. As an example, determine the area of the state of Texas, which
is coded as 46 in the usamtx grid:

load usamtx
a = areamat((map == 46), refvec, earthRadius('km'))

a =
6.2528e+005

The grid codes 625,277 square kilometers of land area as belonging to the
U.S.

4 You can construct more complex queries. For instance, using the last
example, compute what portion of the land area of the conterminous U.S.

7-40

Manipulating Raster Geodata

that Texas occupies (water and bordering countries are coded with 2 and
3, respectively):

usaland = areamat((map > 3 | map == 1), maplegend);
texasland = areamat((map == 46), maplegend);
texasratio = texasland/usaland

texasratio =
0.0735

This indicates that Texas occupies roughly 7.35% of the land area of the
U.S.

For further information, see the areamat reference page.

Data Grid Values Along a Path
A common application for gridded geodata is to calculate data values along a
path, for example, the computation of terrain height along a transect, a road,
or a flight path. The mapprofile function does this, based on numerical data
defining a set of waypoints, or by defining them interactively via graphic input
from a map display. Values computed for the resulting profile can be displayed
in a new plot or returned as output arguments for further analysis or display.

Using the mapprofile Function
The following example computes the elevation profile along a straight line:

1 Load the Korean elevation data:

figure;
load korea

2 Get its latitude and longitude limits using limitm and use them to set up
a map frame via worldmap:

[latlim, lonlim] = limitm(map, maplegend);
worldmap(latlim, lonlim)

worldmap plots only the map frame.

7-41

7 Manipulating Geospatial Data

3 Render the map and apply a digital elevation model (DEM) colormap to it:

meshm(map,maplegend,size(map),map)
demcmap(map)

4 Define endpoints for a straight-line transect through the region:

plat = [40.5 30.7];
plon = [121.5 133.5];

5 Compute the elevation profile, defaulting the track type to great circle
and the interpolation type to bilinear:

[z,rng,lat,lon] = mapprofile(map,maplegend,plat,plon);

6 Draw the transect in 3-D so it follows the terrain:

plot3m(lat,lon,z,'w','LineWidth',2)

7 Construct a plot of transect elevation and range:

7-42

Manipulating Raster Geodata

figure; plot(rng,z,'r')

The mapprofile function has other useful options, including the ability to
interactively define tracks and specify units of distance for them. For further
information, see the mapprofile reference page.

Data Grid Gradient, Slope, and Aspect
A map profile is often used to determine slopes along a path. A related
application is the calculation of slope at all points on a matrix. The gradientm
function uses a finite-difference approach to compute gradients for either a
regular or a georeferenced data grid. The function returns the components
of the gradient in the north and east directions (i.e., north-to-south,
east-to-west), as well as slope and aspect. The gradient components are
the change in the grid variable per meter of distance in the north and east

7-43

7 Manipulating Geospatial Data

directions. If the grid contains elevations in meters, the aspect and slope
are the angles of the surface normal clockwise from north and up from the
horizontal. Slope is defined as the change in elevation per unit distance along
the path of steepest ascent or descent from a grid cell to one of its eight
immediate neighbors, expressed as the arctangent. The angles are in units
of degrees by default.

Computing Gradient Data from a Regular Data Grid
The following example illustrates computation of gradient, slope, and aspect
data grids for a regular data grid based on the MATLAB peaks function:

1 Construct a 100-by-100 grid using the peaks function and construct a
referencing matrix for it:

datagrid = 500*peaks(100);
R = makerefmat('RasterSize',size(datagrid));

2 Use gradientm to generate grids containing aspect, slope, gradients to
north, and gradients to east:

[aspect,slope,gradN,gradE] = gradientm(datagrid,R);
whos

Name Size Bytes Class

aspect 100x100 80000 double
datagrid 100x100 80000 double
gradE 100x100 80000 double
gradN 100x100 80000 double
gridrv 1x3 24 double
slope 100x100 80000 double

3 Map the surface data in a cylindrical equal area projection. Start with
the original elevations:

figure; axesm eqacyl
meshm(datagrid,R)
colormap (jet(64))
colorbar('vert')

7-44

Manipulating Raster Geodata

title('Peaks: elevation')
axis square

4 Clear the frame and display the slope grid:

figure; axesm eqacyl
meshm(slope,R)
colormap (jet(64))
colorbar('vert');
title('Peaks: slope')

5 Map the aspect grid:

figure; axesm eqacyl
meshm(aspect,R)
colormap (jet(64))
colorbar('vert');
title('Peaks: aspect')

6 Map the gradients to the north:

figure; axesm eqacyl
meshm(gradN,R)
colormap (jet(64))
colorbar('vert');
title('Peaks: North gradient')

7 Finally, map the gradients to the east:

figure; axesm eqacyl
meshm(gradE,R)
colormap (jet(64))
colorbar('vert');
title('Peaks: East gradient')

The maps of the peaks surface elevation and gradient data are shown below.
See the gradientm reference page for additional information.

7-45

7 Manipulating Geospatial Data

7-46

8

Using Map Projections and
Coordinate Systems

All geospatial data must be flattened onto a display surface in order to visually
portray what exists where. The mathematics and craft of map projection are
central to this process. Although there is no limit to the ways geodata can
be projected, conventions, constraints, standards, and applications generally
prescribe its usage. This chapter describes what map projections are, how
they are constructed and controlled, their essential properties, and some
possibilities and limitations.

• “What Is a Map Projection?” on page 8-2

• “Quantitative Properties of Map Projections” on page 8-3

• “The Three Main Families of Map Projections” on page 8-5

• “Projection Aspect” on page 8-10

• “Projection Parameters” on page 8-18

• “Visualizing and Quantifying Projection Distortions” on page 8-27

• “Accessing, Computing, and Inverting Map Projection Data” on page 8-37

• “Working with the UTM System” on page 8-51

• “Summary and Guide to Projections” on page 8-63

If you are not acquainted with the types, properties, and uses of map
projections, read the first four sections. When constructing maps—especially
in an environment in which a variety of projections are readily available—it is
important to understand how to evaluate projections to select one appropriate
to the contents and purpose of a given map.

8 Using Map Projections and Coordinate Systems

What Is a Map Projection?
Human beings have known that the shape of the Earth resembles a sphere
and not a flat surface since classical times, and possibly much earlier than
that. If the world were indeed flat, cartography would be much simpler
because map projections would be unnecessary.

To represent a curved surface such as the Earth in two dimensions, you must
geometrically transform (literally, and in the mathematical sense, “map”) that
surface to a plane. Such a transformation is called a map projection. The
term projection derives from the geometric methods that were traditionally
used to construct maps, in the fashion of optical projections made with a
device called camera obscura that Renaissance artists relied on to render
three-dimensional perspective views on paper and canvas.

While many map projections no longer rely on physical projections, it is useful
to think of map projections in geometric terms. This is because map projection
consists of constructing points on geometric objects such as cylinders, cones,
and circles that correspond to homologous points on the surface of the planet
being mapped according to certain rules and formulas.

The following sections describe the basic properties of map projections,
the surfaces onto which projections are developed, the types of parameters
associated with different classes of projections, how projected data can be
mapped back to the sphere or spheroid it represents, and details about one
very widely used projection system, called Universal Transverse Mercator.

Note Most map projections in the toolbox are implemented as MATLAB
functions; however, these are only used by certain calling functions (such as
geoshow and axesm), and thus have no documented public API.

For more detailed information on specific projections, browse the Chapter
11, “Map Projections Reference” (available online and in the PDF version of
this document). For further reading, Appendix A, “Bibliography” provides
references to books and papers on map projection.

8-2

Quantitative Properties of Map Projections

Quantitative Properties of Map Projections
A sphere, unlike a polyhedron, cone, or cylinder, cannot be reformed into a
plane. In order to portray the surface of a round body on a two-dimensional
flat plane, you must first define a developable surface (i.e., one that can be cut
and flattened onto a plane without stretching or creasing) and devise rules for
systematically representing all or part of the spherical surface on the plane.
Any such process inevitably leads to distortions of one kind or another. Five
essential characteristic properties of map projections are subject to distortion:
shape, distance, direction, scale, and area. No projection can retain more than
one of these properties over a large portion of the Earth. This is not because
a sufficiently clever projection has yet to be devised; the task is physically
impossible. The technical meanings of these terms are described below.

• Shape (also called conformality)

Shape is preserved locally (within “small” areas) when the scale of a map at
any point on the map is the same in any direction. Projections with this
property are called conformal. In them, meridians (lines of longitude) and
parallels (lines of latitude) intersect at right angles. An older term for
conformal is orthomorphic (from the Greek orthos, straight, and morphe,
shape).

• Distance (also called equidistance)

A map projection can preserve distances from the center of the projection
to all other places on the map (but from the center only). Such a map
projection is called equidistant. Maps are also described as equidistant
when the separation between parallels is uniform (e.g., distances along
meridians are maintained). No map projection maintains distance
proportionality in all directions from any arbitrary point.

• Direction

A map projection preserves direction when azimuths (angles from the
central point or from a point on a line to another point) are portrayed
correctly in all directions. Many azimuthal projections have this property.

• Scale

Scale is the ratio between a distance portrayed on a map and the same
extent on the Earth. No projection faithfully maintains constant scale over
large areas, but some are able to limit scale variation to one or two percent.

8-3

8 Using Map Projections and Coordinate Systems

• Area (also called equivalence)

A map can portray areas across it in proportional relationship to the
areas on the Earth that they represent. Such a map projection is called
equal-area or equivalent. Two older terms for equal-area are homolographic
or homalographic (from the Greek homalos or homos, same, and graphos,
write), and authalic (from the Greek autos, same, and ailos, area), and
equireal. Note that no map can be both equal-area and conformal.

For a complete description of the properties that specific map projections
maintain, see “Summary and Guide to Projections” on page 8-63.

8-4

The Three Main Families of Map Projections

The Three Main Families of Map Projections

In this section...

“Unwrapping the Sphere to a Plane” on page 8-5

“Cylindrical Projections” on page 8-5

“Conic Projections” on page 8-7

“Azimuthal Projections” on page 8-8

Unwrapping the Sphere to a Plane
Mapmakers have developed hundreds of map projections, over several
thousand years. Three large families of map projection, plus several smaller
ones, are generally acknowledged. These are based on the types of geometric
shapes that are used to transfer features from a sphere or spheroid to a
plane. As described above, map projections are based on developable surfaces,
and the three traditional families consist of cylinders, cones, and planes.
They are used to classify the majority of projections, including some that
are not analytically (geometrically) constructed. In addition, a number of
map projections are based on polyhedra. While polyhedral projections have
interesting and useful properties, they are not described in this guide.

Which developable surface to use for a projection depends on what region
is to be mapped, its geographical extent, and the geometric properties that
areas, boundaries, and routes need to have, given the purpose of the map.
The following sections describe and illustrate how the cylindrical, conic, and
azimuthal families of map projections are constructed and provides some
examples of projections that are based on them.

Cylindrical Projections
A cylindrical projection is produced by wrapping a cylinder around a globe
representing the Earth. The map projection is the image of the globe projected
onto the cylindrical surface, which is then unwrapped into a flat surface.
When the cylinder aligns with the polar axis, parallels appear as horizontal
lines and meridians as vertical lines. Cylindrical projections can be either
equal-area, conformal, or equidistant. The following figure shows a regular
cylindrical or normal aspect orientation in which the cylinder is tangent to the

8-5

8 Using Map Projections and Coordinate Systems

Earth along the Equator and the projection radiates horizontally from the axis
of rotation. The projection method is diagrammed on the left, and an example
is given on the right (equal-area cylindrical projection, normal/equatorial
aspect).

For a description of projection aspect, see “Projection Aspect” on page 8-10.

Some widely used cylindrical map projections are

• Equal-area cylindrical projection

• Equidistant cylindrical projection

• Mercator projection

• Miller projection

• Plate Carrée projection

• Universal transverse Mercator projection

Pseudocylindrical Map Projections
All cylindrical projections fill a rectangular plane. Pseudocylindrical
projection outlines tend to be barrel-shaped rather than rectangular.
However, they do resemble cylindrical projections, with straight and parallel
latitude lines, and can have equally spaced meridians, but meridians are

8-6

The Three Main Families of Map Projections

curves, not straight lines. Pseudocylindrical projections can be equal-area,
but are not conformal or equidistant.

Some widely-used pseudocylindrical map projections are

• Eckert projections (I-VI)

• Goode homolosine projection

• Mollweide projection

• Quartic authalic projection

• Robinson projection

• Sinusoidal projection

Conic Projections
A conic projection is derived from the projection of the globe onto a cone placed
over it. For the normal aspect, the apex of the cone lies on the polar axis of the
Earth. If the cone touches the Earth at just one particular parallel of latitude,
it is called tangent. If made smaller, the cone will intersect the Earth twice, in
which case it is called secant. Conic projections often achieve less distortion at
mid- and high latitudes than cylindrical projections. A further elaboration is
the polyconic projection, which deploys a family of tangent or secant cones to
bracket a succession of bands of parallels to yield even less scale distortion.
The following figure illustrates conic projection, diagramming its construction
on the left, with an example on the right (Albers equal-area projection, polar
aspect).

8-7

8 Using Map Projections and Coordinate Systems

Some widely-used conic projections are

• Albers Equal-area projection

• Equidistant projection

• Lambert conformal projection

• Polyconic projection

Azimuthal Projections
An azimuthal projection is a projection of the globe onto a plane. In polar
aspect, an azimuthal projection maps to a plane tangent to the Earth at one
of the poles, with meridians projected as straight lines radiating from the
pole, and parallels shown as complete circles centered at the pole. Azimuthal
projections (especially the orthographic) can have equatorial or oblique
aspects. The projection is centered on a point, that is either on the surface,
at the center of the Earth, at the antipode, some distance beyond the Earth,
or at infinity. Most azimuthal projections are not suitable for displaying the
entire Earth in one view, but give a sense of the globe. The following figure
illustrates azimuthal projection, diagramming it on the left, with an example
on the right (orthographic projection, polar aspect).

8-8

The Three Main Families of Map Projections

Some widely used azimuthal projections are

• Equidistant azimuthal projection

• Gnomonic projection

• Lambert equal-area azimuthal projection

• Orthographic projection

• Stereographic projection

• Universal polar stereographic projection

For additional information on families of map projections and specific map
projections, see Chapter 11, “Map Projections Reference” (available online and
in the PDF version of this document).

8-9

8 Using Map Projections and Coordinate Systems

Projection Aspect
A map projection’s aspect is its orientation on the page or display screen. If
north or south is straight up, the aspect is said to be equatorial; for most
projections this is the normal aspect. When the central axis of the developable
surface is oriented east-west, the projection’s aspect is transverse. Projections
centered on the North Pole or the South Pole have a polar aspect, regardless
of what meridian is up. All other orientations have an oblique aspect. So far,
the examples and discussions of map displays have focused on the normal
aspect, by far the most commonly used. This section discusses the use of
transverse, oblique, and skew-oblique aspects.

Projection aspect is primarily of interest in the display of maps. However, this
section also discusses how the idea of projection aspect as a coordinate system
transformation can be applied to map variables for analytical purposes.

The Orientation Vector
A map axes Origin property is a vector describing the geometry of the
displayed projection. This Mapping Toolbox property is called an orientation
vector (prior versions called it the origin vector). The vector takes this form:

orientvec = [latitude longitude orientation]

The latitude and longitude represent the geographic coordinates of the center
point of the display from which the projection is calculated. The orientation
refers to the clockwise angle from straight up at which the North Pole points
from this center point. The default orientation vector is [0 0 0]; that is, the
projection is centered on the geographic point (0º,0º) and the North Pole is
straight up from this point. Such a display is in a normal aspect. Changes to
only the longitude value of the orientation vector do not change the aspect;
thus, a normal aspect is one centered on the Equator in latitude with an
orientation of 0º.

Both of these Miller projections have normal aspects, despite having different
orientation vectors:

8-10

Projection Aspect

*���������&1<51<'����%���1<����
�������
&���
���������
����/�A1�1�1B'

*���������&1<591<C'����%���1<����
�������
&���
���������
����/�A1� 91�1B'

This makes sense if you think about a simple, true cylindrical projection. This
is the projection of the globe onto a cylinder wrapped around it. For normal
aspects, this cylinder is tangent to the globe at the Equator, and changing
the origin longitude simply corresponds to rotating the sphere about the
longitudinal axis of the cylinder. If you continue with the wrapped-cylinder
model, you can understand the other aspects as well.

Following this description, a transverse projection can be thought of as a
cylinder wrapped around the globe tangent at the poles and along a meridian
and its antipodal meridian. Finally, when such a cylinder is tangent along
any great circle other than a meridian, the result is an oblique projection.

Here are diagrams of the four cylindrical map orientations, or aspects:

8-11

8 Using Map Projections and Coordinate Systems

?����� 4�����
��

*6��)	
 �>
� *6��)	

Of course, few projections are true cylindrical projections, but the concept of
the wrapped cylinder is nonetheless a convenient way to describe aspect.

Exploring Projection Aspect
Perhaps the best way to gain an understanding of projection aspect is to
experiment with orientation vectors. For the following exercise, use a
pseudocylindrical projection, the sinusoidal.

1 Create a default map axes in a sinusoidal projection, turn on the graticule,
and display the coast data set as filled polygons:

8-12

Projection Aspect

figure;
axesm sinusoid
framem on; gridm on; tightmap tight
load coast
patchm(lat, long,'g')

The continents and graticule appear in normal aspect, as shown below.

�����	����� 	������	�	!"#$"#%$	����������	"#
!����������	&�����	'	("	"	")%

2 Inspect the orientation vector from the map axes:

getm(gca,'Origin')

ans =
0 0 0

By default, the origin is set at (0ºE, 0ºN), oriented 0º from vertical.

3 In the normal aspect, the North Pole is at the top of the image. To create
a transverse aspect, imagine pulling the North Pole down to the center of
the display, which was originally occupied by the point (0º,0º). Do this by
setting the first element of Origin parameter to a latitude of 90ºN:

setm(gca,'Origin',[90 0 0])

8-13

8 Using Map Projections and Coordinate Systems

The shape of the frame is unaffected; this is still a sinusoidal projection.

*���&����	����� 	������	�	!+"#�$"#%$	����������	"#
!����������	&�����	'	(+"	"	")%

4 The normal and transverse aspects can be thought of as limiting conditions.
Anything else is an oblique aspect. Conceptually, if you push the North
Pole halfway back to its original position (to the position originally occupied
by the point (45ºN, 0ºE) in the normal aspect), the result is a simple oblique
aspect.

setm(gca,'Origin',[45 0 0])

The oblique sinusoidal projection centered at (45ºN, 0ºE) is shown below.

8-14

Projection Aspect

�������	����� 	������	�	!,-#�$"#%$	����������	"#
!����������	&�����	'	(,-	"	")%

You can think of this as pulling the new origin (45ºN, 0º) to the center of the
image, the place that (0º,0º) occupied in the normal aspect.

5 The previous examples of projection aspect kept the aspect orientation at
0º. If the orientation is altered, an oblique aspect becomes a skew-oblique.
Imagine the previous example with an orientation of 45º. Think of this as
pulling the new origin (45ºN,0ºE), down to the center of the projection and
then rotating the projection until the North Pole lies at an angle of 45º
clockwise from straight up with respect to the new origin.

setm(gca,'Origin',[45 0 45])

As in the previous example, the location (45ºN,0ºE) still occupies the center
of the map.

8-15

8 Using Map Projections and Coordinate Systems

���
.�������	����� 	������	�	!,-#�$"#%$	����������	,-#
!����������	&�����	'	(,-	"	,-)%

Any projection can be viewed in alternate aspects. Some of these are quite
useful. For example, the transverse aspect of the Mercator projection is widely
used in cartography, especially for mapping regions with predominantly
north-south extent. One candidate for such handling might be Chile. Oblique
Mercator projections might be used to map long regions that run neither
north and south nor east and west, such as New Zealand.

Note The projection aspect discussed in this section is different from the map
axes Aspect property. The map axes Aspect property controls the orientation
of the figure axes. For instance, if a map is in a normal setting with a
landscape orientation, a switch to a transverse aspect rotates the axes by
90º, resulting in a portrait orientation. To display a map in the transverse
aspect, combine the transverse aspect property with a -90º skew angle. The
skew angle is the last element of the Origin parameter. For example, a
[0 0 -90] vector would produce a transverse map.

The base projection can be thought of as a standard coordinate system, and
the normal aspect conforms to it. The features of a projection are maintained
in any aspect, relative to the base projection. As the preceding illustrations
show, the outline (frame) does not change. Nondirectional projection

8-16

Projection Aspect

characteristics also do not change. For example, the sinusoidal projection
is equal-area, no matter what its aspect. Directional characteristics must
be considered carefully, however. In the normal aspect of the sinusoidal
projection, scale is true along every parallel and the central meridian. This
is not the case for the skew-oblique aspect; however, scale is true along the
paths of the transformed parallels and meridian.

8-17

8 Using Map Projections and Coordinate Systems

Projection Parameters
Every projection has at least one parameter that controls how it transforms
geographic coordinates into planar coordinates. Some projections are rather
fixed, and aside from the orientation vector and nominal scale factor, have no
parameters that the user should vary, as to do so would violate the definition
of the projection. For example, the Robinson projection has one standard
parallel that is fixed by definition at 38º North and South; the Cassini and
Wetch projections cannot be constructed in other than Normal aspect. In
general, however, projections have several variable parameters. The following
section discusses map projection parameters and provides guidance for
setting them.

Projection Characteristics Maps Can Have
In addition to the name of the projection itself, the parameters that a map
projection can have are

• Aspect— Orientation of the projection on the display surface

• Center or Origin— Latitude and longitude of the midpoint of the display

• Scale Factor— Ratio of distance on the map to distance on the ground

• Standard Parallel(s)— Chosen latitude(s) where scale distortion is zero

• False Northing— Planar offset for coordinates on the vertical map axis

• False Easting— Planar offset for coordinates on the horizontal map axis

• Zone — Designated latitude-longitude quadrangle used to systematically
partition the planet for certain classes of projections

While not all projections require all these parameters, there will always be a
projection aspect, origin, and scale.

Other parameters are associated with the graphic expression of a projection,
but do not define its mathematical outcome. These include

• Map latitude and longitude limits

• Frame latitude and longitude limits

8-18

Projection Parameters

However, as certain projections are unable to map an entire planet, or become
very distorted over large regions, these limits are sometimes a necessary
part of setting up a projection.

Determining Projection Parameters
In the following exercise, you define a map axes and examine default
parameters for a cylindrical, a conic, and an azimuthal projection.

1 Set up a default Mercator projection (which is cylindrical) and pass its
handle to the getm function to query projection parameters:

figure;
h=axesm('Mapprojection','mercator','Grid','on','Frame','on',...
'MlabelParallel',0,'PlabelMeridian',0,'mlabellocation',60,...
'meridianlabel','on','parallellabel','on')

The graticule and frame for the default map projection are shown below.

 180° W 120° W 60° W 0° 60° E 120° E 180° E

 75° S

 60° S

 45° S
 30° S
 15° S
 0°

 15° N
 30° N
 45° N

 60° N

 75° N

8-19

8 Using Map Projections and Coordinate Systems

2 Query the map axes handle using getm to inspect the properties that pertain
to map projection parameters. The principal ones are aspect, origin,
scalefactor, nparallels, mapparallels, falsenorthing, falseeasting,
zone, maplatlimit, maplonlimit, rlatlimit, and flonlimit:

getm(h,'aspect')

ans =
normal

getm(h,'origin')

ans =
0 0 0

getm(h,'scalefactor')

ans =
1

getm(h,'nparallels')

ans =
1

getm(h,'mapparallels')

ans =
0

getm(h,'falsenorthing')

ans =
0

getm(h,'falseeasting')

ans =
0

8-20

Projection Parameters

getm(h,'zone')

ans =
[]

getm(h,'maplatlimit')

ans =
-86 86

getm(h,'maplonlimit')

ans =
-180 180

getm(h,'Flatlimit')

ans =
-86 86

getm(h,'Flonlimit')

ans =
-180 180

For more information on these and other map axes properties, see the
reference page for axesm.

3 Reset the projection type to equal-area conic ('eqaconic'). The figure is
redrawn to reflect the change. Determine the parameters that the toolbox
changes in response:

setm(h,'Mapprojection', 'eqaconic')
getm(h,'aspect')

ans =
normal

getm(h,'origin')

8-21

8 Using Map Projections and Coordinate Systems

ans =
0 0 0

getm(h,'scalefactor')

ans =
1

getm(h,'nparallels')

ans =
2

getm(h,'mapparallels')

ans =
15 75

getm(h,'falsenorthing')

ans =
0

getm(h,'falseeasting')

ans =
0

getm(h,'zone')

ans =
[]

getm(h,'maplatlimit')

ans =
-86 86

getm(h,'maplonlimit')

8-22

Projection Parameters

ans =
-135 135

getm(h,'Flatlimit')

ans =
-86 86

getm(h,'Flonlimit')

ans =
-135 135

The eqaconic projection has two standard parallels, at 15º and 75º. It
also has reduced longitude limits (covering 270º rather than 360º). The
resulting eqaconic graticule is shown below.

4 Now set the projection type to Stereographic ('stereo') and examine the
same properties as you did for the previous projections:

setm(h,'Mapprojection','stereo')
setm(gca,'MLabelParallel',0,'PLabelMeridian',0)
getm(h,'aspect')

ans =
normal

8-23

8 Using Map Projections and Coordinate Systems

getm(h,'origin')

ans =
0 0 0

getm(h,'scalefactor')

ans =
1

getm(h,'nparallels')

ans =
0

getm(h,'mapparallels')

ans =
[]

getm(h,'falsenorthing')

ans =
0

getm(h,'falseeasting')

ans =
0

getm(h,'zone')

ans =
[]

getm(h,'maplatlimit')

ans =
-90 90

8-24

Projection Parameters

getm(h,'maplonlimit')

ans =
-180 180

getm(h,'Flatlimit')

ans =
-Inf 90

getm(h,'Flonlimit')

ans =
-180 180

The stereographic projection, being azimuthal, does not have standard
parallels, so none are indicated. The map limits do not change from the
previous projection. The map figure is shown below.

8-25

8 Using Map Projections and Coordinate Systems

Chapter 11, “Map Projections Reference” (available online and in the PDF
version of this document) lists and illustrates all supported Mapping Toolbox
map projections, including suggestions for parameter usage.

8-26

Visualizing and Quantifying Projection Distortions

Visualizing and Quantifying Projection Distortions

In this section...

“Displays of Spatial Error in Maps” on page 8-27

“Quantifying Map Distortions at Point Locations” on page 8-31

Displays of Spatial Error in Maps
Because no projection can preserve all directional and nondirectional
geographic characteristics, it is useful to be able to estimate the degree
of error in direction, area, and scale for a particular projection type and
parameters used. Several Mapping Toolbox functions display projection
distortions, and one computes distortion metrics for specified locations.

A standard method of visualizing the distortions introduced by the map
projection is to display small circles at regular intervals across the globe.
After projection, the small circles appear as ellipses of various sizes,
elongations, and orientations. The sizes and shapes of the ellipses reflect the
projection distortions. Conformal projections have circular ellipses, while
equal-area projections have ellipses of the same area. This method was
invented by Nicolas Tissot in the 19th century, and the ellipses are called
Tissot indicatrices in his honor. The measure is a tensor function of location
that varies from place to place, and reflects the fact that, unless a map is
conformal, map scale is different in every direction at a location.

Visualizing Projection Distortions via Tissot Indicatrices
As the following example illustrates, you can add the indicatrices to a map
display with the command tissot and remove them with clmo tissot:

1 Set up a Sinusoidal projection in a skewed aspect, plotting the graticule:

figure;
axesm sinusoid
gridm on;framem on;
setm(gca,'Origin', [20 30 45])

2 Load the coast data set and plot it as green patches:

8-27

8 Using Map Projections and Coordinate Systems

load coast
patchm(lat,long,'g')

3 Plot the default Tissot diagram, shown below:

tissot

Notice that the circles vary considerably in shape. This indicates that the
Sinusoidal projection is not conformal. Despite the distortions, however,
the circles all cover equal amounts of area on the map, because the
projection has the equal-area property.

Default Tissot diagrams are drawn with blue unfilled 100-point circles
spaced 30 degrees apart in both directions. The default circle radius is 1/10
of the current radius of the reference ellipsoid (by default that radius is 1).

4 Now clear the Tissot diagram, rotate the projection to a polar aspect, and
plot a new Tissot diagram using circles paced 20 degrees apart, half as big
as before, drawn with 20 points, and drawn in red:

clmo tissot
setm(gca,'Origin', [90 0 45])
tissot([20 20 .05 20],'Color','r')

The result is shown below. Note that circles are drawn faster because fewer
points are computed for each one. Also note that the distortions are still
smallest close to the map origin, and still greatest near the map frame.

8-28

Visualizing and Quantifying Projection Distortions

Try changing the map projection to a conformal one such as Mercator or
Stereographic to see what Tissot indicatrices look like on shape-preserving
maps.

For further information, see the reference page for tissot.

Visualizing Projection Distortions via Isolines
Most map projection distortions are rather orderly and vary continuously,
making them suitable for display via isolines (contour lines). In addition
to Tissot diagrams, the toolbox can plot isolines of variations of several
parameters associated with map projections, using mdistort.

The mdistort function can plot variations in angles, areas, maximum and
minimum scale, and scale along parallels and meridians, in units of percent
deviation (except for angles, for which degrees are used). Use this function in
selecting projections and projection parameters when you are concerned about
keeping specific types of distortion within limits. Below are some examples of
mdistort using the Hammer modified azimuthal projections and the Bonne
pseudoconic projection.

1 Create a Hammer projection map axes in normal aspect, and plot a
graticule, frame, and coastlines on it:

figure;
axesm('MapProjection','hammer','Grid','on','Frame','on')

8-29

8 Using Map Projections and Coordinate Systems

2 Load the coast data set and plot it as green patches:

load coast
patchm(lat,long,'g')

3 Call mdistort to plot contours of minimum-to-maximum scale ratios:

mdistort('scaleratio')

Notice that the region of minimum distortion is centered around (0,0).

4 Repeat this diagram with a Bonne projection in a new figure window:

figure;
axesm('MapProjection','bonne','Grid','on','Frame','on')
patchm(lat,long,'g')
mdistort('scaleratio')

Notice that the region of minimum distortion is centered around (30,0),
which is where the single standard parallel is.

��������	�/	�0����1�������	����	����

D���
� #���

5 You can toggle the isolines by typing mdistort or mdistort off. Look at
some other types of distortion. The types you can request are

• area — Percent departures from equal area

• angles — Angular distortion of right angles

• scale or maxscale — Percent of maximum scale

8-30

Visualizing and Quantifying Projection Distortions

• minscale — Percent of minimum scale

• parscale — Percent of scale along the parallels

• merscale — Percent of scale along the meridians

• scaleratio— Percent of maximum-to-minimum scale ratio

For further information see the reference page for mdistort.

Quantifying Map Distortions at Point Locations
The tissot and mdistort functions described above provide synoptic visual
overviews of different forms of map projection error. Sometimes, however, you
need numerical estimates of error at specific locations in order to quantify or
correct for map distortions. This is useful, for example, if you are sampling
environmental data on a uniform basis across a map, and want to know
precisely how much area is associated with each sample point, a statistic
that will vary by location and be projection dependent. Once you have this
information, you can adjust environmental density and other statistics you
collect for areal variations induced by the map projection.

A Mapping Toolbox function returns location-specific map error statistics from
the current projection or an mstruct. The distortcalc function computes
the same distortion statistics as mdistort does, but for specified locations
provided as arguments. You provide the latitude-longitude locations one at a
time or in vectors. The general form is

[areascale,angdef,maxscale,minscale,merscale,parscale] = ...
distortcalc(mstruct,lat,long)

However, if you are evaluating the current map figure, omit the mstruct. You
need not specify any return values following the last one of interest to you.

Using distortcalc to Determine Map Projection Geometric
Distortions
The following exercise uses distortcalc to compute the maximum area
distortion for a map of Argentina from the landareas data set.

1 Read the North and South America polygon:

8-31

8 Using Map Projections and Coordinate Systems

Americas = shaperead('landareas','UseGeoCoords',true, ...
'Selector', {@(name) ...
strcmpi(name,{'north and south america'}),'Name'});

2 Set the spatial extent (map limits) to contain the southern part of South
America and also include an area closer to the South Pole:

mlatlim = [-72.0 -20.0];
mlonlim = [-75.0 -50.0];
[alat, alon] = maptriml([Americas.Lat], ...

[Americas.Lon], mlatlim, mlonlim);

3 Create a Mercator cylindrical conformal projection using these limits,
specify a five-degree graticule, and then plot the outline for reference:

figure;
axesm('MapProjection','mercator','grid','on', ...

'MapLatLimit',mlatlim,'MapLonLimit',mlonlim,...
'MLineLocation',5, 'PLineLocation',5)

plotm(alat,alon,'b')

The map looks like this:

8-32

Visualizing and Quantifying Projection Distortions

4 Sample every tenth point of the patch outline for analysis:

alats = alat(1:10:numel(alat));
alons = alon(1:10:numel(alat));

5 Compute the area distortions (the first value returned by distortcalc) at
the sample points:

adistort = distortcalc(alats, alons);

6 Find the range of area distortion across Argentina (percent of a unit area
on, in this case, the equator):

adistortmm = [min(adistort) max(adistort)]

adistortmm =
1.1790 2.7716

8-33

8 Using Map Projections and Coordinate Systems

As Argentina occupies mid southern latitudes, its area on a Mercator map
is overstated, and the errors vary noticeably from north to south.

7 Remove any NaNs from the coordinate arrays and plot symbols to represent
the relative distortions as proportional circles, using scatterm:

nanIndex = isnan(adistort);
alats(nanIndex) = [];
alons(nanIndex) = [];
adistort(nanIndex) = [];
scatterm(alats,alons,20*adistort,'red','filled')

The resulting map is shown below:

8 The degree of area overstatement would be considerably larger if it
extended farther toward the pole. To see how much larger, get the area
distortion for 50ºS, 60ºS, and 70ºS:

8-34

Visualizing and Quantifying Projection Distortions

a=distortcalc(-50,-60)

a =
2.4203

a=distortcalc(-60,-60)

a =
4

>> a=distortcalc(-70,-60)

a =
8.5485

Note You can only use distortcalc to query locations that are within the
current map frame or mstruct limits. Outside points yield NaN as a result.

9 Using this technique, you can write a simple script that lets you query a
map repeatedly to determine distortion at any desired location. You can
select locations with the graphic cursor using inputm. For example,

[plat plon] = inputm(1)

plat =
-62.225

plon =
-72.301

>> a=distortcalc(plat,plon)

a =
4.6048

Naturally the answer you get will vary depending on what point you pick.
Using this technique, you can write a simple script that lets you query a
map repeatedly to determine any distortion statistic at any desired location.

8-35

8 Using Map Projections and Coordinate Systems

Try changing the map projection or even the orientation vector to see how
the choice of projection affects map distortion. For further information, see
the reference page for distortcalc.

8-36

Accessing, Computing, and Inverting Map Projection Data

Accessing, Computing, and Inverting Map Projection Data

In this section...

“Accessing Projected Coordinate Data” on page 8-37

“Projecting Coordinates Without a Map Axes” on page 8-39

“Inverse Map Projection” on page 8-41

“Coordinate Transformations” on page 8-45

Accessing Projected Coordinate Data
Most of the examples in this document assume that the end product of a
map projection is a graphical representation as a map, and that the planar
coordinates yielded by projection are of little interest. However, there might
be times when you need access to projected coordinate data. You might also
have projected data that you want to transform back to latitude and longitude
(assuming you know its projection parameters). The following sections
describe how to retrieve projected data, project it without displaying it, and
invert projections.

A MATLAB figure generally contains coordinate data only in its axes child
object and in children of axes objects, such as line, patch, and surface objects.
See the reference page for axes for an overview of this object hierarchy.
Note that a map axes can have multiple patch children objects when created
with patchesm.

You can retrieve projected data from a map axes, but you can also obtain it
without having to plot the data or even creating a map axes. The following
two exercises illustrate each of these approaches.

Retrieving Projected Coordinates from a Figure
An easy way to retrieve the projected coordinates of a map occupying a figure
window is with the MATLAB get command. The projected coordinates are
stored in the object’s XData and YData properties. The XData and YData can
belong to a child object rather than to the axes themselves, however, as the
following exercise demonstrates.

1 Create a Mollweide projection map axes and obtain its handle:

8-37

8 Using Map Projections and Coordinate Systems

figure;
ha = axesm('mollweid')

2 Observe that the axes has no XData, YData, or children information:

get(ha,'XData')

??? Error using ==> get
Invalid axes property: 'XData'.

get(ha,'YData')

??? Error using ==> get
Invalid axes property: 'YData'.

get(ha,'children')

ans =
Empty matrix: 0-by-1

3 Display a map frame for the Mollweide projection, obtaining its handle.
Confirm that the frame is a child of the axes:

hf = framem

hf =
105

get(ha,'children')

ans =
105

4 Use get to extract the x-y coordinates of the map frame:

xf = get(hf,'XData');
yf = get(hf,'YData');

The xf and yf coordinates are 398-by-1 column vector arrays.

5 Load the coast data set and render it with plotm, obtaining a handle:

8-38

Accessing, Computing, and Inverting Map Projection Data

load coast
hl = plotm(lat,long)

hl =
106

get(ha, 'children')

ans =
106
105

Note that the line data is also a child of the axes.

6 Retrieve the projected coastline coordinates using handle hl:

xline = get(hl,'XData');
yline = get(hl,'YData');

The xline and yline coordinates are 1-by-9591 row vector arrays. Inspect
their contents before proceeding.

7 The units for projected coordinates are established by the ellipsoid vector.
By default, these units are Earth radii, but you can change them at any
time using setm to control the geoid property. For example, set the units
to kilometers on a spherical earth with

setm(gca,'Geoid', almanac('earth','sphere','kilometers'))

Repeat step 6 above to see how this affects coordinate values. See “The
Ellipsoid Vector” on page 3-4 for further information on specifying
coordinate units and ellipsoids.

Projecting Coordinates Without a Map Axes
You do not need to display a map object to obtain its projected coordinates. You
can perform the same projection computations that are done within Mapping
Toolbox display commands by calling the defaultm and mfwdtran functions.

8-39

8 Using Map Projections and Coordinate Systems

Using mfwdtran with a Map Projection Structure
Before projecting the data, you must define projection parameters, just as you
would prepare a map axes with axesm before displaying a map. The projection
parameters are stored in a map projection structure that is stored within a
map axes object, but you can directly create and use such a structure for
projection computations without involving a map axes or a graphical display.

1 Begin by using defaultm to create an empty map projection structure for a
Sinusoidal projection.

mstruct = defaultm('sinusoid');

The structure mstruct appears in the workspace. Use the property editor to
view its fields and contents.

2 Set the map limits for the mstruct. You must invoke defaultm a second
time to fully populate the fields of the map projection structure and to
ensure that the effects of property settings are properly implemented.

mstruct.maplonlimit = [-150 -30];
mstruct.geoid = almanac('earth','grs80','kilometers');
mstruct = defaultm(mstruct);

3 Note that the origin longitude is centered between the longitude limits.

mstruct.origin

4 Trim the coast to the map limits set above.

load coast
[latt,lont] = maptriml(lat,long, ...

mstruct.maplatlimit,mstruct.maplonlimit);

5 Having defined the map projection parameters, project the latitude and
longitude vectors into plane coordinates with the Sinusoidal projection and
display the result using nonmapping MATLAB graphic commands.

[x,y] = mfwdtran(mstruct,latt,lont);
figure
plot(x,y)
axis equal

8-40

Accessing, Computing, and Inverting Map Projection Data

The plot shows that resulting data are projected in the specified aspect.

For additional information, see the reference pages for defaultm and
mfwdtran. It is also possible to reverse the process using minvtran, as the
next section, “Inverse Map Projection” on page 8-41, describes. You may also
use projfwd and projinv, which are newer Mapping Toolbox functions that
use the PROJ.4 map projection library to do forward and inverse projections,
respectively. See the references pages for projfwd and projinv for details.

Inverse Map Projection
The process of obtaining latitudes and longitudes from geodata with planar
coordinates is called inverse projection. Most, but not all, map projections
have inverses. Mapping Toolbox function minvtran transforms plane
coordinates into geodetic coordinates; it is a mirror image of mfwdtran, which
is described in “Using mfwdtran with a Map Projection Structure” on page
8-40. Like its twin, minvtran operates on a geographic data structure that
you can explicitly create. If the coordinate data originates from an external

8-41

8 Using Map Projections and Coordinate Systems

source or vendor, you need to know its correct projection parameters in order
for inverse projection to be successful.

Recovering Geodetic Coordinates with minvtran
In the following exercise exploring the use of minvtran, you again work with
the coast data set, using the projected coordinates created in the previous
exercise, “Using mfwdtran with a Map Projection Structure” on page 8-40.

1 If you do not have the results of the previous exercise in the workspace,
perform it now and go on to step 2. You have the following variables:

Name Size Bytes Class

lat 9589x1 76712 double array
long 9589x1 76712 double array
mstruct 1x1 7360 struct array
x 9599x1 76792 double array
y 9599x1 76792 double array

Grand total is 38563 elements using 314368 bytes

The difference in size between lat and long and x and y are due to clipping
the x-y data to the map frame (NaNs are inserted at clip locations).

2 Transform the projected x-y data back into geographic coordinates with
the inverse transformation function:

[lat2,long2] = minvtran(mstruct,x,y);

3 In a new figure, plot the resulting latitudes and longitudes as if they were
plane coordinates, and set the frame larger than default:

figure; plot(long2,lat2); axis equal
set(gca,'XLim',[-200 200],'YLim',[-100 100])

8-42

Accessing, Computing, and Inverting Map Projection Data

Notice the wraparound in Antarctica. This occurred because its coastline
crosses the International Date Line. In the projection transformation
process, longitude data outside [-180 180] degrees is projected back into
this range because angles differing by 360º are geographically equivalent.
The data from the inverse transformation process therefore jumps from
180º to -180º, as depicted by the horizontal lines in the figure above.

Obtaining Angular Directions in a Projection Space
In addition to projecting geographic positions into Cartesian coordinates,
you can project angles between the sphere and the plane. For cylindrical
projections in normal aspect, north maps to up on the y-axis, and east maps to
right on the x-axis. This is not necessarily true of other projection types. In
the normal aspect of conic projections, for example, north may skew to the left
or right of vertical, depending on longitude. The vfwdtran function, which
takes latitudes, longitudes, and azimuths, computes angles that geographic
vectors make on the projection plane.

To illustrate, define vectors pointing north (0º) and east (90º) at three locations
and use vfwdtran to compute the angles of north and east in projected
coordinates on an equidistant conic projection.

8-43

8 Using Map Projections and Coordinate Systems

Note Geographic angles are measured clockwise from north, while projected
angles are measured counterclockwise from the x-axis.

1 Set up an equidistant conic projection for the northern hemisphere:

figure;
axesm('eqdconic','MapLatLimit',[-10 45],'MapLonLimit',[-55 55])
gridm; framem; mlabel; plabel; tightmap

2 Define three locations along the equator:

lats = [0 0 0];
lons = [-45 0 45];

3 Define north and east azimuths for each point:

northazs = [0 0 0];
eastazs = [90 90 90];

4 Compute the projected direction of north for each location:

pnorth = vfwdtran(lats,lons,northazs)

ans =
59.614 90 120.39

North varies from about 60º from the x-axis, to vertical, to 120º from the
x-axis, quite symmetrically.

5 Compute projected direction of east for each location:

peast = vfwdtran(lats,lons,eastazs)

ans =
-30.385 0.0001931 30.386

pnorth - peast

ans =
90 90 90

8-44

Accessing, Computing, and Inverting Map Projection Data

The projected east vectors show a similar symmetry, and as expected form
complementary angles to north.

6 Use quiverm to plot the six vectors on the projection; note their plane
angles:

quiverm(lats, lons, [0 0 0], [10 10 10], 0)
quiverm(lats, lons, [10 10 10], [0 0 0], 0)

For more information, see the reference pages for vfwdtran and quiverm.

Coordinate Transformations
In “The Orientation Vector” on page 8-10, you explored the concept of altering
the aspect of a map projection in terms of pushing the North Pole to new
locations. Another way to think about this is to redefine the coordinate
system, and then to compute a normal aspect projection based on the new
system. For example, you might redefine a spherical coordinate system so
that your home town occupies the origin. If you calculated a map projection
in a normal aspect with respect to this transformed coordinate system, the
resulting display would look like an oblique aspect of the true coordinate
system of latitudes and longitudes.

This transformation of coordinate systems can be useful independent of map
displays. If you transform the coordinate system so that your home town

8-45

8 Using Map Projections and Coordinate Systems

is the new North Pole, then the transformed coordinates of all other points
will provide interesting information.

Note The types of coordinate transformations described here are appropriate
for the spherical case only. Attempts to perform them on an ellipsoid will
produce incorrect answers on the order of several to tens of meters.

When you place your home town at a pole, the spherical distance of each
point from your hometown becomes 90º minus its transformed latitude (also
known as a colatitude). The point antipodal to your town would become the
South Pole, at -90º. Its distance from your hometown is 90º-(-90º), or 180º, as
expected. Points 90º distant from your hometown all have a transformed
latitude of 0º, and thus make up the transformed equator. Transformed
longitudes correspond to their respective great circle azimuths from your
home town.

Reorienting Vector Data with rotatem
The rotatem function uses an orientation vector to transform latitudes and
longitudes into a new coordinate system. The orientation vector can be
produced by the newpole or putpole functions, or can be specified manually.

As an example of transforming a coordinate system, suppose you live in
Midland, Texas, at (32ºN,102ºW). You have a brother in Tulsa (36.2ºN,96ºW)
and a sister in New Orleans (30ºN,90ºW).

1 Define the three locations:

midl_lat = 32; midl_lon = -102;
tuls_lat = 36.2; tuls_lon = -96;
newo_lat = 30; newo_lon = -90;

2 Use the distance function to determine great circle distances and azimuths
of Tulsa and New Orleans from Midland:

[dist2tuls az2tuls] = distance(midl_lat,midl_lon,...
tuls_lat,tuls_lon)

dist2tuls =

8-46

Accessing, Computing, and Inverting Map Projection Data

6.5032

az2tuls =
48.1386

[dist2neworl az2neworl] = distance(midl_lat,midl_lon,...
newo_lat,newo_lon)

dist2neworl =
10.4727

az2neworl =
97.8644

Tulsa is about 6.5 degrees distant, New Orleans about 10.5 degrees distant.

3 Compute the absolute difference in azimuth, a fact you will use later.

azdif = abs(az2tuls-az2neworl)

azdif =
49.7258

4 Today, you feel on top of the world, so make Midland, Texas, the north pole
of a transformed coordinate system. To do this, first determine the origin
required to put Midland at the pole using newpole:

origin = newpole(midl_lat,midl_lon)

origin =
58 78 0

The origin of the new coordinate system is (58ºN, 78ºE). Midland is now at
a new latitude of 90º.

5 Determine the transformed coordinates of Tulsa and New Orleans using
the rotatem command. Because its units default to radians, be sure to
include the degrees keyword:

[tuls_lat1,tuls_lon1] = rotatem(tuls_lat,tuls_lon,...
origin,'forward','degrees')

8-47

8 Using Map Projections and Coordinate Systems

tuls_lat1 =
83.4968

tuls_lon1 =
-48.1386

[newo_lat1,newo_lon1] = rotatem(newo_lat,newo_lon,...
origin,'forward','degrees')

newo_lat1 =
79.5273

newo_lon1 =
-97.8644

6 Show that the new colatitudes of Tulsa and New Orleans equal their
distances from Midland computed in step 2 above:

tuls_colat1 = 90-tuls_lat1

tuls_colat1 =
6.5032

newo_colat1 = 90-newo_lat1

newo_colat1 =
10.4727

7 Recall from step 4 that the absolute difference in the azimuths of the two
cities from Midland was 49.7258º. Verify that this equals the difference in
their new longitudes:

tuls_lon1-newo_lon1

ans =
49.7258

You might note small numerical differences in the results (on the order of
10-6), due to roundoff error and trigonometric functions.

For further information, see the reference pages for rotatem, newpole,
putpole, neworig, and org2pol.

8-48

Accessing, Computing, and Inverting Map Projection Data

Reorienting Gridded Data with neworig
You can transform coordinate systems of data grids as well as vector
data. When regular data grids are manipulated in this manner, distance
and azimuth calculations with the map variable become row and column
operations.

It is easy to transform a regular data grid to create a new one with its data
rearranged to correspond to a new coordinate system using the neworig
function. To demonstrate this, do the following:

1 Load the topo data set and transform it to a new coordinate system in
which a point in Sri Lanka (7ºN, 80ºE) is the north pole:

figure;
load topo
origin = newpole(7,80)

origin =
83.0000 -100.0000 0

2 Reorient the data grid with neworig, using this orientation vector:

[Z,lat,lon] = neworig(topo,topolegend,origin);

Note that the result, [Z,lat,lon], is a geolocated data grid, not a regular
data grid like the original topo data.

3 Display the new map:

axesm miller
latlim = [-90 90];
lonlim = [-180 180];
gratsize = [90 180];
[lat,lon] = meshgrat(latlim,lonlim,gratsize);
surfm(lat,lon,Z);
demcmap(topo)
mstruct = getm(gca);
mstruct.origin

4 This map is displayed in normal aspect, as its orientation vector shows:

8-49

8 Using Map Projections and Coordinate Systems

mstruct = getm(gca);
mstruct.origin

ans =
0 0 0

An interesting feature of this new grid is that every cell in its first row is 0º–1º
distant from the point (7ºN, 80ºE), and every cell in its second row is 1º–2º
distant, etc. Another feature is that every cell in a particular column has the
same great circle azimuth from the new origin.

8-50

Working with the UTM System

Working with the UTM System

In this section...

“What Is the Universal Transverse Mercator System?” on page 8-51

“Understanding UTM Parameters” on page 8-52

“Setting UTM Parameters with a GUI” on page 8-54

“Working in UTM Without a Map Axes” on page 8-59

“Mapping Across UTM Zones” on page 8-60

What Is the Universal Transverse Mercator System?
So far, this chapter has described types and parameters of specific projections,
treating each in isolation. The following sections discuss how the Transverse
Mercator and Polar Stereographic projections are used to organize a
worldwide coordinate grid. This system of projections is generally called
Universal Transverse Mercator (UTM). This system supports many military,
scientific, and surveying applications.

The UTM system divides the world into a regular nonoverlapping grid of
quadrangles, called zones, each 8 by 6 degrees in extent. Each zone uses
formulas for a transverse version of the Mercator projection, with projection
and ellipsoid parameters designed to limit distortion. The Transverse
Mercator projection is defined between 80 degrees south and 84 degrees north.
Beyond these limits, the Universal Polar Stereographic (UPS) projection
applies.

The UPS has two zones only, north and south, which also have special
projection and ellipsoid parameters.

In addition to the zone identifier—a grid reference in the form of a number
followed by a letter (e.g., 31T)—each UTM zone has a false northing and a false
easting. These are offsets (in meters) that enable each zone to have positive
coordinates in both directions. For UTM, they are constant, as follows:

• False easting (for every zone): 500,000 m

• False northing (all zones in the Northern Hemisphere): 0 m

8-51

8 Using Map Projections and Coordinate Systems

• False northing (all zones in the Southern Hemisphere): 1,000,000 m

For UPS (in both the north and south zones), the false northing and false
easting are both 2,000,000.

Understanding UTM Parameters
You can create UTM maps with axesm, just like any other projection.
However, unlike other projections, the map frame is limited to an 8-by-6
degree map window (the UTM zone), as the following steps illustrate.

1 Create a UTM map axes:

axesm utm

2 Get the map axes properties and inspect them in the Command Window or
with the Variable Editor. The first few illustrate the projection defaults:

h = getm(gca)
mapprojection: 'utm'

zone: '31N'
angleunits: 'degrees'

aspect: 'normal'
falsenorthing: 0
falseeasting: 500000
fixedorient: []

geoid: [6.3782e+006 0.082483]
maplatlimit: [0 8]
maplonlimit: [0 6]

mapparallels: []
nparallels: 0

origin: [0 3 0]
scalefactor: 0.9996

trimlat: [-80 84]
trimlon: [-180 180]

frame: 'off'
ffill: 100

fedgecolor: [0 0 0]
ffacecolor: 'none'
flatlimit: [0 8]

flinewidth: 2

8-52

Working with the UTM System

flonlimit: [-3 3]
...

Note that the default zone is 31N. This is selected because the map origin
defaults to [0 3 0], which is on the equator and at a longitude of 3º E. This is
the center longitude of zone 31N, which has a latitude limit of [0 8], and a
longitude limit of [0 6].

3 Move the zone one to the east, and inspect the other parameters again:

setm(gca,'zone','32n')
h = getm(gca)
mapprojection: 'utm'

zone: '32N'
angleunits: 'degrees'

aspect: 'normal'
falsenorthing: 0
falseeasting: 500000
fixedorient: []

geoid: [6.3782e+006 0.082483]
maplatlimit: [0 8]
maplonlimit: [6 12]

mapparallels: []
nparallels: 0

origin: [0 9 0]
scalefactor: 0.9996

trimlat: [-80 84]
trimlon: [-180 180]

frame: 'off'
ffill: 100

fedgecolor: [0 0 0]
ffacecolor: 'none'
flatlimit: [0 8]

flinewidth: 2
flonlimit: [-3 3]

...

Note that the map origin and limits are adjusted for zone 32N.

4 Draw the map grid and label it:

8-53

8 Using Map Projections and Coordinate Systems

setm(gca,'grid','on','meridianlabel','on','parallellabel','on')

5 Load and plot the coast data set to see a close-up of the Gulf of Guinea
and Bioko Island in UTM:

load coast
plotm(lat,long)

Setting UTM Parameters with a GUI
The easiest way to use the UTM projection is through a graphical user
interface. You can create or modify a UTM area of interest with the axesmui
projection control panel, and get further assistance form the utmzoneui
control panel.

8-54

Working with the UTM System

1 You can Shift+click in a map axes window, or type axesmui to display the
projection control panel. Here you start from scratch:

figure;
axesm utm
axesmui

The Map Projection field is set to cyln: Universal Transverse
Mercator (UTM).

Note For UTM and UPS maps, the Aspect field is set to normal and
cannot be changed. If you attempt to specify transverse, an error results.

2 Click the Zone button to open the utmzoneui panel. Click the map near
your area of interest to pick the zone:

8-55

8 Using Map Projections and Coordinate Systems

Note that while you can open the utmzoneui control panel from the
command line, you then have to manually update the figure with the zone
name it returns with a setm command:

setm(gca,'zone',ans)

3 Click the Accept button.

The utmzoneui panel closes, and the zone field is set to the one you picked.
The map limits are updated accordingly, and the geoid parameters are
automatically set to an appropriate ellipsoid definition for that zone. You
can override the default choice by selecting another ellipsoid from the list
or by typing the parameters in the Geoid field.

8-56

Working with the UTM System

4 Click Apply to close the projection control panel.

The projection is then ready for projection calculations or map display
commands.

5 Now view a choropleth base map from the usstatehi demo shapefile for
the area within the zone that you just selected:

states = shaperead('usastatehi', 'UseGeoCoords', true);
framem
faceColors = makesymbolspec('Polygon',...

{'INDEX', [1 numel(states)],...
'FaceColor', polcmap(numel(states))});

geoshow(states,'DisplayType', 'polygon',...
'SymbolSpec', faceColors)

8-57

8 Using Map Projections and Coordinate Systems

What you see depends on the zone you selected. The preceding display
is for zone 18T, which contains portions of New England and the Middle
Atlantic states.

You can also calculate projected UTM grid coordinates from latitudes and
longitudes:

[latlim, lonlim] = utmzone('15S')

latlim =
32 40

lonlim =
-96 -90

[x,y] = mfwdtran(latlim, lonlim)

x =

8-58

Working with the UTM System

-1.5029e+006 -7.8288e+005
y =

3.7403e+006 4.5369e+006

Working in UTM Without a Map Axes
You can set up UTM to calculate coordinates without generating a map
display, using the defaultm function. The utmzone and utmgeoid functions
help you select a zone and an appropriate ellipsoid. In the following exercise,
you generate UTM coordinate data for a location in New York City, using that
point to define the projection itself.

1 Define a location in New York City:

p1 = [40.7, -74.0];

2 Obtain the UTM zone for this point:

z1 = utmzone(p1)

z1 =
18T

3 Obtain the suggested ellipsoid vector and name for this zone:

[ellipsoid,estr] = utmgeoid(z1)

ellipsoid =
6.3782e+006 0.082272

estr =
clarke66

4 Set up the UTM coordinate system based on this information:

utmstruct = defaultm('utm');
utmstruct.zone = '18T';
utmstruct.geoid = ellipsoid;
utmstruct = defaultm(utmstruct)

The empty latitude limits will be set properly by defaultm.

5 Now you can calculate the grid coordinates, without a map display:

8-59

8 Using Map Projections and Coordinate Systems

[x,y] = mfwdtran(utmstruct,p1(1),p1(2))

x =
5.8448e+005

y =
4.5057e+006

More on utmzone
You can also use the utmzone function to compute the zone limits for a given
zone name. For example, using the preceding data, the latitude and longitude
limits for zone 18T are

utmzone('18T')

ans =
40 48 -78 -72

Therefore, you can call utmzone recursively to obtain the limits of the UTM
zone within which a point location falls:

[zonelats zonelons] = utmzone(utmzone(40.7, -74.0))

zonelats =
40 48

zonelons =
-78 -72

For further information, see the reference pages for utmzone, utmgeoid, and
defaultm.

Mapping Across UTM Zones
Because UTM is a zone-based coordinate system, it is designed to be used
like a map series, selecting from the appropriate sheet. While it is possible
to extend one zone’s coordinates into a neighboring zone’s territory, this is
not normally done.

To display areas that extend across more than one UTM zone, it might be
appropriate to use the Mercator projection in a transverse aspect. Of course,
you do not obtain coordinates in meters that would match those of a UTM

8-60

Working with the UTM System

projection, but the results will be nearly as accurate. Here is an example of a
transverse Mercator projection appropriate to Chile. Note how the projection’s
line of zero distortion is aligned with the predominantly north-south axis of
the country. The zero distortion line could be put exactly on the midline of
the country by a better choice of the orientation vector’s central meridian
and orientation angle.

figure;
latlim = [-60 -15];centralMeridian = -70; width = 20;
axesm('mercator',...

'Origin',[0 centralMeridian -90],...
'Flatlimit',[-width/2 width/2],...
'Flonlimit',sort(-latlim),...
'Aspect','transverse')

land = shaperead('landareas.shp', 'UseGeoCoords', true);
geoshow([land.Lat], [land.Lon]);
framem
gridm; setm(gca,'plinefill',1000)
tightmap
mdistort scale

Note You might receive warnings about points from landareas.shp falling
outside the valid projection region. You can ignore such warnings.

8-61

8 Using Map Projections and Coordinate Systems

8-62

Summary and Guide to Projections

Summary and Guide to Projections
Cartographers often choose map projections by determining the types of
distortion they want to minimize or eliminate. They can also determine
which of the three projection types (cylindrical, conic, or azimuthal) best suits
their purpose and region of interest. They can attach special importance
to certain projection properties such as equal areas, straight rhumb lines
or great circles, true direction, conformality, etc., further constricting the
choice of a projection.

The toolbox has about 60 different built-in map projections. To list them all,
type maps. The following table also summarizes them and identifies their
properties. Notes for Special Features are located at the end of the table.
Detailed information on all Mapping Toolbox map projections can be found
in Chapter 11, “Map Projections Reference” (available online and in the PDF
version of this document).

Projection Syntax Type
Equal--
Area

Con-
formal

Equi-
distant

Special
Features

Balthasart balthsrt Cylindrical •

Behrmann behrmann Cylindrical •

Bolshoi Sovietskii
Atlas Mira

bsam Cylindrical

Braun Perspective braun Cylindrical

Cassini cassini Cylindrical •

Central ccylin Cylindrical

Equal-Area Cylindrical eqacylin Cylindrical •

Equidistant
Cylindrical

eqdcylin Cylindrical •

Gall Isographic giso Cylindrical •

Gall Orthographic gortho Cylindrical •

Gall Stereographic gstereo Cylindrical

Lambert Equal-Area
Cylindrical

lambcyln Cylindrical •

8-63

8 Using Map Projections and Coordinate Systems

Projection Syntax Type
Equal--
Area

Con-
formal

Equi-
distant

Special
Features

Mercator mercator Cylindrical • 1

Miller miller Cylindrical

Plate Carrée pcarree Cylindrical •

Trystan Edwards trystan Cylindrical •

Universal Transverse
Mercator (UTM)

utm Cylindrical •

Wetch wetch Cylindrical

Apianus II apianus Pseudo-
cylindrical

Collignon collig Pseudo-
cylindrical

•

Craster Parabolic craster Pseudo-
cylindrical

•

Eckert I eckert1 Pseudo-
cylindrical

Eckert II eckert2 Pseudo-
cylindrical

•

Eckert III eckert3 Pseudo-
cylindrical

Eckert IV eckert4 Pseudo-
cylindrical

•

Eckert V eckert5 Pseudo-
cylindrical

Eckert VI eckert6 Pseudo-
cylindrical

•

Fournier fournier Pseudo-
cylindrical

•

Goode Homolosine goode Pseudo-
cylindrical

•

8-64

Summary and Guide to Projections

Projection Syntax Type
Equal--
Area

Con-
formal

Equi-
distant

Special
Features

Hatano Asymmetrical
Equal-Area

hatano Pseudo-
cylindrical

•

Kavraisky V kavrsky5 Pseudo-
cylindrical

•

Kavraisky VI kavrsky6 Pseudo-
cylindrical

•

Loximuthal loximuth Pseudo-
cylindrical

McBryde-Thomas
Flat-Polar Parabolic

flatplrp Pseudo-
cylindrical

•

McBryde-Thomas
Flat-Polar Quartic

flatplrq Pseudo-
cylindrical

•

McBryde-Thomas
Flat-Polar Sinusoidal

flatplrs Pseudo-
cylindrical

•

Mollweide mollweid Pseudo-
cylindrical

•

Putnins P5 putnins5 Pseudo-
cylindrical

Quartic Authalic quartic Pseudo-
cylindrical

•

Robinson robinson Pseudo-
cylindrical

Sinusoidal sinusoid Pseudo-
cylindrical

•

Tissot Modified
Sinusoidal

modsine Pseudo-
cylindrical

•

Wagner IV wagner4 Pseudo-
cylindrical

•

Winkel I winkel Pseudo-
cylindrical

8-65

8 Using Map Projections and Coordinate Systems

Projection Syntax Type
Equal--
Area

Con-
formal

Equi-
distant

Special
Features

Albers Equal-Area
Conic

eqaconic Conic •

Equidistant Conic eqdconic Conic •

Lambert Conformal
Conic

lambert Conic •

Murdoch I Conic murdoch1 Conic • 3

Murdoch III Minimum
Error Conic

murdoch3 Conic • 3

Bonne bonne Pseudoconic •

Werner werner Pseudoconic •

Polyconic polycon Polyconic

Van Der Grinten I vgrint1 Polyconic

Breusing Harmonic
Mean

breusing Azimuthal

Equidistant Azimuthal eqdazim Azimuthal •

Gnomonic gnomonic Azimuthal 4

Lambert Azimuthal
Equal-Area

eqaazim Azimuthal •

Orthographic ortho Azimuthal

Stereographic stereo Azimuthal • 5

Universal Polar
Stereographic (UPS)

ups Azimuthal • 5

Vertical Perspective
Azimuthal

vperspec Azimuthal

Wiechel wiechel Pseudo-
azimuthal

•

Aitoff aitoff Modified
Azimuthal

8-66

Summary and Guide to Projections

Projection Syntax Type
Equal--
Area

Con-
formal

Equi-
distant

Special
Features

Briesemeister bries Modified
Azimuthal

•

Hammer hammer Modified
Azimuthal

•

Globe globe Spherical • • • 6

1 Straight rhumb lines.

2 Rhumb lines from central point are straight, true to scale, and correct
in azimuth.

3 Correct total area.

4 Straight line great circles.

5 Great and small circles appear as circles or lines.

6 Three-dimensional display (not a map projection).

8-67

8 Using Map Projections and Coordinate Systems

8-68

9

Creating Web Map Service
Maps

• “Introduction to Web Map Service” on page 9-2

• “Basic Workflow for Creating WMS Maps” on page 9-5

• “Searching the WMS Database” on page 9-8

• “Refining Your Search” on page 9-11

• “Updating Your Layer” on page 9-13

• “Retrieving Your Map” on page 9-15

• “Modifying Your Request” on page 9-34

• “Overlaying Multiple Layers” on page 9-39

• “Animating Data Layers” on page 9-49

• “Retrieving Elevation Data” on page 9-60

• “Saving Favorite Servers” on page 9-70

• “Exploring Other Layers from a Server” on page 9-72

• “Writing a KML File” on page 9-75

• “Searching for Layers Outside the Database” on page 9-77

• “Hosting Your Own WMS Server” on page 9-78

• “Common Problems with WMS Servers” on page 9-79

9 Creating Web Map Service Maps

Introduction to Web Map Service

In this section...

“What Web Map Service Servers Provide” on page 9-2

“Basic WMS Terminology” on page 9-4

What Web Map Service Servers Provide
Web Map Service (WMS) servers follow a standard developed by the Open
Geospatial Consortium, Inc.® (OGC) and provide access to a wealth of
geospatial information. With maps from WMS servers, you can:

• Use any publicly available WMS data

• Easily adjust colors and styles to more clearly display information

• Update your map to reflect the most recent data

• Share your map with others

Mapping Toolbox software simplifies the process of WMS map creation by
using a stored database of WMS servers. You can search the database for
layers and servers that are of interest to you.

9-2

Introduction to Web Map Service

As an example, the WMS Global Mosaic map displays data from Landsat7
satellite scenes.

��	��
�!�?"�"EF�; ����
%

The Ozone Effect on Global Warming map displays data from the NASA
Goddard Institute for Space Studies (GISS) computer model study.

��	��
�!�?"�"E$����������
�����%���
��
����
������G��	���-��������	���

9-3

9 Creating Web Map Service Maps

Basic WMS Terminology

• Open Geospatial Consortium, Inc. (OGC)— An organization
comprising companies, government agencies, and universities that defines
specifications for providers of geospatial data and developers of software
designed to access that data. The specifications ensure that providers and
clients can talk to each other and thus promote the sharing of geospatial
data worldwide. You can access the Web Map Server Implementation
Specification at the OGC Web site.

• Web Map Service— The OGC® defines a Web Map Service (WMS) as an
entity that “produces maps of spatially referenced data dynamically from
geographic information.”

• WMS server— A server that follows the guidelines of the OGC to render
maps and return them to clients.

• georeferenced — Tied to a specific location on the Earth.

• raster data — Data represented as a matrix in which each element
corresponds to a specific rectangular or quadrangular geographic area.

• map— The OGC defines a map as “a portrayal of geographic information
as a digital image file suitable for display on a computer screen.”

• raster map — Geographically referenced information stored as a regular
array of cells.

• layer — A data set containing a specific type of geographic information.
Information can include temperature, elevation, weather, orthoimagery,
boundaries, demographics, topography, transportation, environmental
measurements, or various data from satellites.

• capabilities document — An XML document containing metadata
describing the geographic content offered by a server.

9-4

http://www.opengeospatial.org/standards/wms

Basic Workflow for Creating WMS Maps

Basic Workflow for Creating WMS Maps

Workflow Summary

1 Search WMS Database.

2 Refine search.

3 Update layer.

4 Modify request.

5 Retrieve map.

6 Display map.

Creating a Map of Elevation in Europe
Follow the example to learn the basic steps in creating a WMS map.

1 Search the local WMS Database for a layer. WMS servers store map data
in units called layers. Search for elevation layers.

elevation = wmsfind('elevation');

wmsfind returns an array of hundreds of WMSLayer objects.

2 Refine your search. The MicroImages TNTserver™ hosts a wide variety
of layers, including elevation data. Use the WMSLayer.refine method
to refine your preliminary search results to include only layers on the
MicroImages server.

microheight = elevation.refine('microimages', ...
'SearchField', 'serverurl');

GTOPO30 is a digital elevation model developed by the United States
Geological Survey (USGS). Refine your search to include only the layer
with GTOPO30 in the LayerName field.

gtopolayer = microheight.refine('gtopo30', ...
'SearchField', 'layername');

9-5

9 Creating Web Map Service Maps

3 Update your layer. You can skip this optional step for this example. The
wmsupdate function accomplishes two tasks:

• Updates your WMSLayer object to include the most recent data

• Fills in its Details, CoordRefSysCodes, and Abstract fields

4 Modify your request. Specify geographic limits, image dimensions,
background color, and other properties of the map. In this simple example,
modify only the background color. Choose red, green, and blue levels to
define an ocean color.

oceanColor = [0 170 255];

5 Retrieve your map.

First, set up a map axes with projection and geographic limits appropriate
for Europe.

figure
worldmap europe;

Then, return the map axes map structure, which contains the settings for
all the current map axes properties.

mstruct = gcm;

Use the WMSLayer object gtopolayer as input for wmsread. Set the wmsread
longitude and latitude limit parameters to the current map axes limits. Set
the BackgroundColor parameter to oceanColor.

[elevationImage, R] = wmsread(gtopolayer, 'Latlim', ...
mstruct.maplatlimit, 'Lonlim', mstruct.maplonlimit, ...
'BackgroundColor', oceanColor);

The wmsread function returns a map called elevationImage and a
referencing matrix R, which ties the map to a specific location on Earth.

6 Display your map.

geoshow(elevationImage, R);

9-6

Basic Workflow for Creating WMS Maps

title({'Europe','Elevation'}, 'FontWeight', 'bold')

��	��
�!���������
�5���,

9-7

9 Creating Web Map Service Maps

Searching the WMS Database

In this section...

“Introduction to the WMS Database” on page 9-8

“Finding Temperature Data” on page 9-9

Introduction to the WMS Database
The Mapping Toolbox contains a database of over 1,000 stored WMS servers
and over 100,000 layers. This database, called the WMS Database, updates
at the time of the software release and includes a subset of available WMS
servers. MathWorks created the database by conducting a series of Internet
searches and qualifying the search results.

Note MathWorks cannot guarantee the stability and accuracy of WMS
data, as the servers listed in the WMS Database are located on the Internet
and are independent from MathWorks. Occasionally, you may receive error
messages from servers experiencing difficulties. The WMS Database changes
at the beginning of each new software release. Servers can go down or become
unavailable.

The WMS Database contains the following fields.

Field Name Data Type Field Content

ServerTitle String Title of the WMS server, descriptive
information about the server

ServerURL String URL of the WMS server

LayerTitle String Title of the layer, descriptive information
about the layer

LayerName String Name of the layer, keyword the server
uses to retrieve the layer

9-8

Searching the WMS Database

Field Name Data Type Field Content

Latlim Two-element
vector

Southern and northern latitude limits of
the layer

Lonlim Two-element
vector

Western and eastern longitude limits of
the layer

The LayerTitle and LayerName fields sometimes have the same values. The
LayerName indicates a code used by the servers, such as '29:2', while the
LayerTitle provides more descriptive information. For instance, 'Elevation
and Rivers with Backdrop' is a LayerTitle.

wmsfind is the only WMS function that accesses the stored WMS Database.
The following example illustrates how to use wmsfind to find a layer.

Finding Temperature Data
For this example, assume that you work as a research scientist and study
the relationship between global warming and plankton growth. Increased
plankton growth leads to increased carbon dioxide absorption and reduced
global warming. The sea surface temperature is already rising, however,
which may reduce plankton growth in some areas. You begin investigating
this complex relationship by mapping sea surface temperature.

1 Search the WMS Database for temperature data.

layers = wmsfind('temperature');

By default, wmsfind searches both the LayerName and LayerTitle fields of
the WMS Database for partial matches. The function returns a WMSLayer
array, which contains one WMSLayer object for each layer whose name or
title partially matches 'temperature'.

2 Click layers in the Workspace browser and then click one of the objects
labeled <1x1 WMSLayer>.

Sample Output:

ServerTitle: 'NASA SVS Image Server'
ServerURL: 'http://aes.gsfc.nasa.gov/cgi-bin/wms?'

9-9

9 Creating Web Map Service Maps

LayerTitle: 'Background Image for Global Sea Surface ...
Temperature from June, 2002 to September,
2003 (WMS)'

LayerName: '2905_17492_bg'
Latlim: [-90.0000 90.0000]
Lonlim: [-180.0000 180.0000]

Abstract: '<Update using WMSUPDATE>'
CoordRefSysCodes: '<Update using WMSUPDATE>'

Details: '<Update using WMSUPDATE>'

A WMSLayer object contains three fields that do not appear in the WMS
Database—Abstract, CoordRefSysCodes, and Details. (By default, these
fields do not display in the command window if they are not populated with
wmsupdate. For more information, see “Updating Your Layer” on page 9-13
in the Mapping Toolbox User’s Guide.)

Note WMSLayer is one of several classes related to WMS. If you are new to
object-oriented programming, you can learn more about classes, methods,
and properties in the Object-Oriented Programming section of the MATLAB
documentation.

9-10

Refining Your Search

Refining Your Search

In this section...

“Refining by Text String” on page 9-11

“Refining by Geographic Limits” on page 9-12

Refining by Text String
Your initial search may return hundreds or even thousands of layers.
Scanning all these layers to find the most relevant one could take a long
time. You need to refine your search.

1 Refine your search to receive only layers that include sea surface
temperature.

layers = wmsfind('temperature');
sst = layers.refine('sea surface');

2 Refine the search again to include only layers that contain the term “global.”

global_sst = sst.refine('global');

3 Display one of the layers.

global_sst(4).disp

Sample Output:

Index: 4
ServerTitle: 'NASA SVS Image Server'

ServerURL: 'http://aes.gsfc.nasa.gov/cgi-bin/wms?'
LayerTitle: 'Background Image for Global Sea Surface ...

Temperature Anomalies from June, 2002 ...
to September, 2003 (WMS)'

LayerName: '2906_17499_bg'
Latlim: [-90.0000 90.0000]
Lonlim: [-180.0000 180.0000]

9-11

9 Creating Web Map Service Maps

Refining by Geographic Limits
You can search for layers in a specific geographic area.

1 First, find hurricane layers.

layers = wmsfind('hurricane');

2 Refine your search by selecting layers that are in the western hemisphere.

western_hemisphere = layers.refineLimits ...
('Latlim',[-90 90], 'Lonlim', [-180 0]);

3 Refine again to include only layers in the western hemisphere that include
temperature data.

temp_and_west = western_hemisphere.refine('temperature');

9-12

Updating Your Layer

Updating Your Layer
After you find your specific layer of interest, you can leave the local WMS
Database and work with a WMS server. In this section, you learn how to
synchronize your layer with the WMS source server.

Note When working with the Internet, you may have to wait several minutes
for information to download, or servers can become unavailable. If you
encounter problems, refer to “Common Problems with WMS Servers” on page
9-79 for tips.

Use the wmsupdate function to synchronize a WMSLayer object with the
corresponding WMS server. This synchronization populates the Abstract,
CoordRefSysCodes, and Details fields.

1 Find all layers in the WMS Database with the title “Global Sea Surface
Temperature.”

global_sst = wmsfind ('Global Sea Surface Temperature', ...
'SearchField', 'LayerTitle');

2 Use the WMSLayer.servers method to determine the number of unique
servers.

global_sst.servers

3 If your search returns more than one server, consider setting the wmsupdate
'AllowMultipleServers' property to true. (However, be aware that if you
have many servers, updating them could take a long time.)

global_sst = wmsupdate(global_sst, 'AllowMultipleServers', true);

4 Now that you have updated all the fields in your WMSLayer objects, you
can search by the Abstract field.

el_nino = global_sst.refine ('El Nino', 'SearchField', ...
'abstract');

9-13

9 Creating Web Map Service Maps

Type el_nino(1).Abstract at the command line to view the abstract of
the first layer.

Sample Output:

The temperature of the surface of the world's oceans provides
a clear indication of the state of the Earth's climate and
weather....In this visualization of the anomaly covering the
period from June, 2002, to September, 2003, the most obvious
effects are a successive warming and cooling along the equator
to the west of Peru, the signature of an El Nino/La Nina cycle....

5 Type el_nino(1).CoordRefSysCodes at the command line to view the
coordinate reference system codes associated with this layer. In this
example, 'EPSG:4326' is given as the coordinate reference system code.
For more information, see “Understanding Coordinate Reference System
Codes” on page 9-16 in the Mapping Toolbox User’s Guide.

6 To view the contents of the Details field, type el_nino(1).Details at
the command line.

Sample Output:

ans =

MetadataURL: 'http://svs.gsfc.nasa.gov/vis/a000000/a002900...
/a002906/a002906.fgdc'

Attributes: [1x1 struct]
BoundingBox: [1x1 struct]

Dimension: [1x1 struct]
ImageFormats: {'image/png'}
ScaleLimits: [1x1 struct]

Style: [1x2 struct]
Version: '1.1.1'

The Style field covers a wide range of information, such as the line styles
used to render vector data, the background color, the numeric format of
data, the month of data collection, or the dimensional units.

9-14

Retrieving Your Map

Retrieving Your Map

In this section...

“Ways to Retrieve Your Map” on page 9-15

“Understanding Coordinate Reference System Codes” on page 9-16

“Retrieving Your Map with wmsread” on page 9-16

“Setting Optional Parameters” on page 9-17

“Adding a Legend to Your Map” on page 9-19

“Retrieving Your Map with WebMapServer.getMap” on page 9-28

Ways to Retrieve Your Map
To retrieve a map from a WMS server, use the function wmsread or, in a
few specific situations, the WebMapServer.getMap method. Use the getMap
method when:

• Working with non-EPSG:4326 reference systems

• Creating an animation of a specific geographic area over time

• Retrieving multiple layers from a WMS server

In most cases, use wmsread to retrieve your map. To use wmsread, specify
either a WMSLayer object or a map request URL. Obtain a WMSLayer object by
using wmsfind to search the WMS Database. Obtain a map request URL from:

• The output of wmsread

• The RequestURL property of a WMSMapRequest object

• An Internet search

The map request URL string is composed of a WMS server URL with
additional WMS parameters. The map request URL can be inserted into a
browser to make a request to a server, which then returns a raster map.

9-15

9 Creating Web Map Service Maps

Understanding Coordinate Reference System Codes
When using wmsread, request a map that uses the EPSG:4326 coordinate
reference system. EPSG stands for European Petroleum Survey Group. This
group, an organization of specialists working in the field of oil exploration,
developed a database of coordinate reference systems. Coordinate reference
systems identify position unambiguously. Coordinate reference system codes
are numbers that stand for specific coordinate reference systems.

EPSG:4326 is based on the 1984 World Geodetic System (WGS84) datum and
the latitude and longitude coordinate system, with angles in degrees and
Greenwich as the central meridian. All servers in the WMS Database, and
presumably all WMS servers in general, use the EPSG:4326 reference system.
This system is a requirement of the OGC WMS specification. If a layer
does not use EPSG:4326, Mapping Toolbox software uses the next available
coordinate reference system code. The Mapping Toolbox does not support
automatic coordinate reference systems (systems in which the user chooses
the center of projection). For more information about coordinate reference
system codes, please see the Spatial Reference Web site.

Retrieving Your Map with wmsread
NASA’s Blue Marble Next Generation layer shows the Earth’s surface for
each month of 2004 at high resolution (500 meters/pixel). Read and display
the Blue Marble Next Generation layer.

1 Search the WMS Database for all layers with 'nasa' in the ServerURL field.

nasa = wmsfind('nasa', 'SearchField', 'serverurl');

2 Use the WMSLayer.refine method to refine your search to include only
those layers with the phrase 'bluemarbleng' in the LayerName field. This
syntax creates an exact search.

layer = nasa.refine('bluemarbleng', 'SearchField', 'layername', ...
'MatchType', 'exact');

3 Use the wmsread function to retrieve the Blue Marble Next Generation
layer.

[A, R] = wmsread(layer);

9-16

http://spatialreference.org

Retrieving Your Map

The wmsread function returns A, a geographically referenced raster map,
and R, a referencing matrix that ties A to the EPSG:4326 geographic
coordinate system. The geographic limits of A span the full latitude and
longitude extent of layer.

4 Open a figure window, set up your map axes, and display your map.

figure
axesm globe
axis off
geoshow(A, R)
title('Blue Marble: Next Generation')

��	��
�!�?"�"EF�; ����
%

Setting Optional Parameters
The wmsread function allows you to set many optional parameters, such as
image height and width and background color. This example demonstrates
how to view an elevation map in 0.5-degree resolution by changing the cell

9-17

9 Creating Web Map Service Maps

size, and how to display the ocean in light blue by setting the background
color. For a complete list of parameters, see the wmsread reference page.

1 The MicroImages, Inc. TNTserver™, like NASA, hosts a wide variety
of layers. Search the WMS Database for layers that contain the string
'microimages' in the ServerURL field.

microLayers = wmsfind('microimages', 'SearchField', 'serverurl');

2 GTOPO30, a digital elevation model developed by the United States
Geological Survey (USGS), has a horizontal grid spacing of 30 arc seconds.
Refine your search to include only layers that contain the string 'gtopo30'
in the LayerName and LayerTitle fields.

gtopo30Layer = microLayers.refine('gtopo30');

The refined search returns one layer.

3 Choose red, green, and blue levels to define a background color.

oceanColor = [0 170 255];

4 Use the BackgroundColor and CellSize parameters of the wmsread
function to determine the background color and cell size, as you retrieve
your map.

cellSize = 0.5;
[A,R] = wmsread(gtopo30Layer, 'BackgroundColor', oceanColor, ...

'CellSize', cellSize);

5 Open a figure window and set up a world map axes. Display your map
with a title.

figure
worldmap world
geoshow(A, R)
title('GTOPO30 Elevation Model')

9-18

Retrieving Your Map

��	��
�!���������
�5���,

Adding a Legend to Your Map
A WMS server renders a layer as an image. Without a corresponding legend,
interpreting the pixel colors can be difficult. Some WMS servers provide
access to a legend image for a particular layer via a URL that appears in
the layer’s Details.Style.LegendURL field. (See the WMSLayer.Details
reference page for more information.)

Although a legend provides valuable information to help interpret image pixel
colors, only about 45% of the servers in the WMS database contain at least
one layer with an available legend. Less than 10% of the layers in the WMS
database contain a legend, but nearly 80% of the layers in the database are
on the columbo.nrlssci.navy.mil server. This server always has empty
LegendURL fields. You cannot use wmsfind to search only for layers with
legends because the database does not store this level of detail. You must
update a layer from the server before you can access the LegendURL field.

This example demonstrates how to create a map of surface temperature, and
then obtain and display the associated legend image:

1 Search for layers from the NASA Goddard Space Flight SVS Image
Server. This server contains layers that have legend images. You can
tell that legend images are available because the layers have content in
the LegendURL field.

9-19

9 Creating Web Map Service Maps

layers = wmsfind('gsfc.nasa.gov', 'SearchField', 'serverurl');
serverURL = layers(1).ServerURL;
gsfc = wmsinfo(serverURL);

2 Find the layer containing urban temperature signatures and display the
abstract:

urban_temperature = gsfc.Layer.refine('urban*temperature');
disp(urban_temperature.Abstract)

Big cities influence the environment around them. For example,
urban areas are typically warmer than their surroundings.
Cities are strikingly visible in computer models that simulate
the Earth's land surface. This visualization shows average
surface temperature predicted by the Land Information System (LIS)
for a day in June 2001. Only part of the global computation
is shown, focusing on the highly urbanized northeast corridor
in the United States, including the cities of Boston, New York,
Philadelphia, Baltimore, and Washington.

Additional Credit:
NASA GSFC Land Information System (http://lis.gsfc.nasa.gov/)

3 Read and display the layer. The map appears with different colors in
different regions, but without a legend it is not clear what these colors
represent.

[A,R] = wmsread(urban_temperature);
figure
usamap(A,R)
geoshow(A,R)
title('Urban Temperature Signatures')
axis off

9-20

Retrieving Your Map

��	��
�!�?"�"�$����������
�����%���
��
�

4 Investigate the Details field of the urban_temperature layer. This layer
has only one structure in the Style field. The Style field determines how
the server renders the layer.

urban_temperature.Details

ans =

MetadataURL: [1x65 char]
Attributes: [1x1 struct]

BoundingBox: [1x1 struct]

9-21

9 Creating Web Map Service Maps

Dimension: [1x1 struct]
ImageFormats: {'image/png'}
ScaleLimits: [1x1 struct]

Style: [1x1 struct]
Version: '1.1.1'

Display the Style field in the Command Window:

urban_temperature.Details.Style

ans =

Title: 'Opaque'
Name: 'opaque'

Abstract: [1x319 char]
LegendURL: [1x1 struct]

Each Style element has only one LegendURL. Investigate the LegendURL:

urban_temperature.Details.Style.LegendURL

ans =

OnlineResource: [1x65 char]
Format: 'image/png'
Height: 90
Width: 320

5 Download the legend URL and save it:

url = urban_temperature.Details.Style.LegendURL.OnlineResource
urlwrite(url, 'temp_bar.png');

The URL appears in the command window:

url =

http://svs.gsfc.nasa.gov/vis/a000000/a003100/a003152/temp_bar.png

6 Display the legend image using the image command and set properties,
such that the image displays with one-to-one, screen-to-pixel resolution.

9-22

Retrieving Your Map

legend = imread('temp_bar.png');
figure('Color','white')
axis off image
set(gca,'units','pixels','position',...

[0 0 size(legend,2) size(legend,1)]);
pos = get(gcf,'position');
set(gcf,'position',...

[pos(1) pos(2) size(legend,2) size(legend,1)]);
image(legend)

��	��
�!�?"�"�$����������
�����%���
��
�

Now the map makes more sense. The regions toward the red end of the
spectrum are warmer.

Steps 7–10 demonstrate how to capture the output from a map frame and
append the legend.

7 By appending the legend in this fashion, you avoid warping text in the
legend image. (Legend text warps if you display the image with geoshow.)

First set your latitude and longitude limits to match the limits of your map
and read in a shapefile with world city data:

[latlim,lonlim] = limitm(A,R);
S = shaperead('worldcities', 'UseGeoCoords',true,...

'BoundingBox',[lonlim(1) latlim(1);lonlim(2) latlim(2)]);

8 Determine the position of the current figure window. Vary the pos(1) and
pos(2) 'Position' parameters as necessary based on the resolution of
your screen.

colValue = [1 1 1];
dimension = size(A,1)/2;
figure

9-23

9 Creating Web Map Service Maps

set(gcf,'Color',[1,1,1])
pos = get(gcf, 'Position');
set(gcf, 'Position', [pos(1) pos(2) dimension dimension])

9 Display the map and add city markers, state boundaries, meridian and
parallel labels, a title, and a North arrow:

usamap(A,R)
geoshow(A,R)
geoshow(S, 'MarkerEdgeColor', colValue, 'Color', colValue)

geoshow('usastatehi.shp', 'FaceColor', 'none',...
'EdgeColor','black')

mlabel('FontWeight','bold')
plabel('FontWeight','bold')
axis off
title('Urban Temperature Signatures', 'FontWeight', 'bold')

for k=1:numel(S)
textm(S(k).Lat, S(k).Lon, S(k).Name, 'Color', colValue,...

'FontWeight','bold')
end

lat = 36.249;
lon = -71.173;
northarrow('Facecolor', colValue, 'EdgeColor', colValue,...

'Latitude', lat, 'Longitude', lon);

9-24

Retrieving Your Map

��	��
�!�?"�"�$����������
�����%���
��
�

10 Display the map and legend as a single, combined image:

f = getframe(gcf);
legendImg = uint8(255*ones(size(legend,1), size(f.cdata,2), 3));
offset = dimension/2;
halfSize = size(legend, 2)/2;
legendImg(:,offset-halfSize:offset+halfSize-1,:) = legend;
combined = [f.cdata; legendImg];
figure

9-25

9 Creating Web Map Service Maps

pos = get(gcf,'position');
set(gcf,'position',[10 100 size(combined,2) size(combined,1)])
set(gca,'units','normalized','position', ...

[0 0 1 1]);
image(combined)
axis off image

9-26

Retrieving Your Map

��	��
�!�?"�"�$����������
�����%���
��
�

9-27

9 Creating Web Map Service Maps

11 Another way to display the map and legend together is to burn the legend
into the map at a specified location. To view the image, use the image
command, setting the position parameters such that there is a one-to-one
pixel-to-screen resolution. (Legend text warps if the image is displayed
with geoshow.)

A_legend = A;
A_legend(end-size(legend,1):end-1,...

end-size(legend,2):end-1,:) = legend;
figure
image(A_legend)
axis off image
set(gca,'Units','normalized','position',...

[0 0 1 1]);
set(gcf,'Position',[10 100 size(A_legend,2) size(A_legend,1)]);
title('Urban Temperature Signatures', 'FontWeight', 'bold')

12 Combine the map and legend in one file, and then publish it to the Web.
First write the images to a file:

mkdir('html')
imwrite(A_legend, 'html/wms_legend.png')
imwrite(combined, 'html/combined.png')

Open the MATLAB Editor, and paste in this code:

%%
% <<wms_legend.png>>

%%
% <<combined.png>>

Add any other text you want to include in your published document. Then
select one of the cells and choose File > Save File and Publish from
the menu.

Retrieving Your Map with WebMapServer.getMap
The WebMapServer.getMap method allows you to retrieve maps in any
properly defined EPSG coordinate reference system. If you want to retrieve a
map in the EPSG:4326 reference system, you can use wmsread. If you want

9-28

Retrieving Your Map

to retrieve a layer whose coordinates are not in the EPSG:4326 reference
system, however, you must use the WMSMapRequest class to construct the
request URL and the WebMapServer.getMap method to retrieve the map. This
example demonstrates how to create maps in UTM coordinates using the
WMSMapRequest and WebMapServer classes.

The Microsoft TerraServer provides ortho-imagery and topography maps from
various regions of the United States. The server provides the data in both
EPSG:4326 and UTM coordinates, as defined by EPSG codes 26905–26920
(representing zones 5–20). For more information about these codes, see the
Spatial Reference Web site.

1 Obtain geographic coordinates that are coincidental with the image in
the file boston.tif.

proj = geotiffinfo('boston.tif');
cornerLat = [proj.CornerCoords.Lat];
cornerLon = [proj.CornerCoords.Lon];
latlim = [min(cornerLat) max(cornerLat)];
lonlim = [min(cornerLon) max(cornerLon)];

2 Convert the geographic limits to UTM.

mstruct = defaultm('utm');
mstruct.zone = '19N';
mstruct.maplatlimit = latlim;
mstruct.maplonlimit = lonlim;
mstruct.geoid = almanac('earth','grs80','m');
mstruct = defaultm(mstruct);
[x y] = mfwdtran(mstruct, latlim, lonlim);
xlimits = [min(x) max(x)];
ylimits = [min(y) max(y)];

3 Calculate image height and width values for a sample size of 5 meters.

metersPerSample = 5;
imageHeight = round(diff(ylimits)/metersPerSample);
imageWidth = round(diff(xlimits)/metersPerSample);

4 Re-compute the new limits.

9-29

http://www.spatialreference.org/ref/?page=9&search=UTM+zone

9 Creating Web Map Service Maps

yLim = [ylimits(1), ylimits(1) + imageHeight*metersPerSample];
xLim = [xlimits(1), xlimits(1) + imageWidth*metersPerSample];

5 Find the UTM zone.

zone = utmzone(latlim, lonlim)

Your output appears as follows:

zone =

19T

The data lies in zone 19, which corresponds to the EPSG:26919 code.

code = 'EPSG:26919';

6 Find the TerraServer from the WMS database and select the Digital
Ortho-Quadrangle layer.

terraserver = wmsfind('terraservice.net','search','serverurl');
doqLayer = terraserver.refine('DOQ');

7 Create WebMapServer and WMSMapRequest objects.

server = WebMapServer(terraserver(1).ServerURL);
request = WMSMapRequest(doqLayer, server);

8 Use WMSMapRequest properties to modify different aspects of your map
request, such as map limits, image size, and coordinate reference system
code. Set the map limits to cover the same region as found in the
boston.tif file.

request.CoordRefSysCode = code;
request.ServerURL = 'http://terraservice.net/ogcmap6.ashx?';
request.ImageHeight = imageHeight;
request.ImageWidth = imageWidth;
request.XLim = xLim;
request.YLim = yLim;

9 Request a map of the ortho-imagery in UTM coordinates.

9-30

Retrieving Your Map

A_UTM = server.getMap(request.RequestURL);
R_UTM = request.RasterRef;

10 Obtain a map for the same region, but in EPSG:4326 coordinates.

[latlim, lonlim] = minvtran(mstruct, xLim, yLim);
request.CoordRefSysCode = 'EPSG:4326';
request.Latlim = latlim;
request.Lonlim = lonlim;
A_Geo = server.getMap(request.RequestURL);
R_Geo = request.RasterRef;

11 Read in Boston place names from a shapefile and overlay them on top of
the maps. Convert the coordinates of the features to UTM and geographic
coordinates. The point coordinates in the shapefile are in meters and
Massachusetts State Plane coordinates, but the GeoTIFF projection is
defined in survey feet.

S = shaperead('boston_placenames');
x = [S.X]*unitsratio('sf','meter');
y = [S.Y]*unitsratio('sf','meter');
names = {S.NAME};
[lat, lon] = projinv(proj, x, y);
[xUTM, yUTM] = mfwdtran(mstruct, lat, lon);

12 Project and display the ortho-imagery obtained in EPSG:4326 coordinates
into UTM coordinates using geoshow.

figure('Renderer','zbuffer')
axesm(mstruct)
geoshow(A_Geo,R_Geo)
textm(lat, lon, names, 'Color',[0 0 0], ...

'BackgroundColor',[0.9 0.9 0],'FontSize',6);
tightmap on
showaxes
xlabel('easting in meters')
ylabel('northing in meters')
title({'USGS Digital Ortho-Quadrangle - Boston', ...

'Geographic Layer'})

9-31

9 Creating Web Map Service Maps

��	��
�!�H,�,�$
���������	��
!

13 Display the ortho-imagery obtained in UTM coordinates.

figure
mapshow(A_UTM,R_UTM);
text(xUTM, yUTM, names, 'Color',[0 0 0], ...

'BackgroundColor',[0.9 0.9 0],'FontSize',6,'Clipping','on');
axis tight
xlabel('easting in meters')
ylabel('northing in meters')
title({'USGS Digital Ortho-Quadrangle - Boston', 'UTM Layer'})

9-32

Retrieving Your Map

��	��
�!�H,�,�$
���������	��
!

9-33

9 Creating Web Map Service Maps

Modifying Your Request

In this section...

“Setting the Geographic Limits and Time” on page 9-34

“Manually Editing a URL” on page 9-36

Setting the Geographic Limits and Time
A WMSMapRequest object contains properties to modify the geographic extent
and time of the requested map. This example demonstrates how to modify
your map request to map sea surface temperature for the ocean surrounding
the southern tip of Africa. See the WMSMapRequest reference page for a
complete list of properties.

1 Search the WMS Database for all layers on NASA’s Earth Observations
(NEO) WMS server.

neowms = wmsfind('neowms', 'SearchField', 'serverurl');

2 Refine your search to include only layers with 'sea surface temperature'
in the layer title or layer name fields of the WMS database.

sst = neowms.refine('sea surface temperature');

3 Refine your search to include only layers with monthly values from the
MODIS sensor on the Aqua satellite.

sst = sst.refine('month*modis');

4 Construct a WebMapServer object from the server URL stored in the
ServerURL property of the WMSLayer object sst.

server = WebMapServer(sst(1).ServerURL);

5 Construct a WebMapRequest object from a WMSLayer array and a
WebMapServer object.

mapRequest = WMSMapRequest(sst, server);

9-34

Modifying Your Request

6 Use the Latlim and Lonlim properties of WMSMapRequest to set the latitude
and longitude limits.

mapRequest.Latlim = [-45 -25];
mapRequest.Lonlim = [15 35];

7 Set the time request to March 1, 2009.

mapRequest.Time = '2009-03-01';

8 Send your request to the server with the WebMapServer.getMap method.
Pass in a WMSMapRequest.RequestURL.

sstImage = server.getMap(mapRequest.RequestURL);

9 Set up empty map axes with the specified geographic limits.

figure
worldmap(mapRequest.Latlim, mapRequest.Lonlim);
setm(gca, 'mlabelparallel', -45)

10 Project and display an image georeferenced to latitude and longitude.
Use the referencing matrix provided by the RasterRef property of the
WMSMapRequest object.

geoshow(sstImage, mapRequest.RasterRef);
title({'South Africa', sst.LayerTitle}, ...

'FontWeight', 'bold', 'Interpreter', 'none')

9-35

9 Creating Web Map Service Maps

��	��
�!�?"�"�@���%�*6�
��������

Manually Editing a URL
You can modify a map request URL manually.

1 Obtain the map request URL.

nasa = wmsfind('nasa', 'SearchField', 'serverurl');
layer = nasa.refine('bluemarbleng', 'SearchField', 'layername', ...

'MatchType', 'exact');
layer = layer(1);
mapRequest = WMSMapRequest(layer);

2 View the map request URL by typing mapRequest.RequestURL at the
command line.

Sample Output:

ans =

9-36

Modifying Your Request

http://neowms.sci.gsfc.nasa.gov/wms/wms?...
SERVICE=WMS...
&LAYERS=BlueMarbleNG...
&EXCEPTIONS=application/vnd.ogc.se_xml...
&FORMAT=image/jpeg...
&TRANSPARENT=FALSE...
&HEIGHT=256...
&BGCOLOR=0xFFFFFF...
&REQUEST=GetMap&WIDTH=512...
&BBOX=-180.0,-90.0,180.0,90.0...
&STYLES=&SRS=EPSG:4326...
&VERSION=1.1.1

3 Modify the bounding box to include the southern hemisphere by directly
changing the mapRequest.RequestURL. Enter the following at the
command line:

modifiedURL =

Then enter the lengthy URL as shown in the previous code sample, but
change the bounding box:

&BBOX=-180.0,-90.0,180.0,0.0

Enter the URL as one continuous string.

4 Display the modified map.

[A, R] = wmsread(modifiedURL);
figure
axesm globe
axis off
geoshow(A, R)
title('Blue Marble: Southern Hemisphere Edition')

9-37

9 Creating Web Map Service Maps

��	��
�!�?"�"EF�; ����
%

9-38

Overlaying Multiple Layers

Overlaying Multiple Layers

In this section...

“Creating a Composite Map of Multiple Layers from One Server” on page
9-39

“Combining Layers from One Server with Data from Other Sources” on
page 9-42

“Draping Topography and Ortho-Imagery Layers over a Digital Elevation
Model Layer” on page 9-44

Creating a Composite Map of Multiple Layers from
One Server
The WMS specification allows the server to merge multiple layers into a
single raster map. NASA’s Globe Visualization server contains many data
layers, such as coastlines, national boundaries, and the EGM96 model of the
Earth’s gravitational potential. Read and display a composite of multiple
layers from the Globe Visualization server. The rendered map has a spatial
resolution of 0.5 degrees.

1 Find the coastline, national boundaries, and EGM96 layers of the Globe
Visualization server.

vizglobe = wmsfind('viz.globe', 'SearchField', 'serverurl');
coastlines = vizglobe.refine('coastline');
national_boundaries = vizglobe.refine('national*bound');
base_layer = vizglobe.refine('egm96');

2 Concatenate the results into a single WMSLayer array.

layers = [base_layer;coastlines;national_boundaries];

3 Construct a WMSMapRequest object from the WMSLayer array. (For this to
work, the layers must all have the same server.)

request = WMSMapRequest(layers);

9-39

9 Creating Web Map Service Maps

4 Request a transparent map background. All pixels not representing
features or data values in a layer are set to a transparent value in the
resulting image, making it possible to produce a composite map.

request.Transparent = true;

5 Use the WMSMapRequest.boundImageSize method to bound the size of the
raster map.

request = request.boundImageSize(720);

6 Pass the RequestURL of request to WebMapServer.getMap to retrieve your
composite map.

overlayImage = request.Server.getMap(request.RequestURL);

7 Display your composite map.

figure
worldmap('world')
geoshow(overlayImage, request.RasterRef);
title(base_layer.LayerTitle)

��	��
�!�?"�"E$����������
�����%���
��
����
������G��	���-��������	���

8 Read and display only the coastlines and national boundaries.

boundaries = [coastlines; national_boundaries];

9-40

Overlaying Multiple Layers

[boundariesImage, R] = wmsread(boundaries, 'CellSize', .5, ...
'Transparent', true);

9 Display the raster map.

figure
worldmap('world')
geoshow(boundariesImage, R);
title(national_boundaries.LayerTitle)

��	��
�!�?"�"E$����������
�����%���
��
����
������G��	���-��������	���

10 Compare the composite map with all three layers with the contoured data
from 'geoid.mat'. (The colormaps differ, but the information presented
in both cases is the same.)

geoid = load('geoid');
coast = load('coast');
figure
worldmap('world')
contourfm(geoid.geoid, geoid.geoidrefvec, 15)
geoshow(coast.lat, coast.long)
title({'EGM96 Contoured Data', '(geoid.mat)'})

9-41

9 Creating Web Map Service Maps

���������
��������%
�@$�97�������
�
���
��6!�?"�"�$������
�����%
�H,�,�?��������$
�������� ���
����
�
�"�
�!

Combining Layers from One Server with Data from
Other Sources
This example, a continuation of the one preceding it, illustrates how you can
merge the boundaries raster map with vector data. Combine two separate
calls to vec2mtx to create a 4-color raster map showing interior land areas,
coastlines, national boundaries, oceans, and world rivers. The vec2mtx
function converts latitude-longitude vectors to a regular data grid.

1 Read the landareas vector shapefile and convert it to an image.

land = shaperead('landareas', 'UseGeoCoords', true);
lat = [land.Lat];
lon = [land.Lon];
[landImage, refvec] = ...

vec2mtx(lat, lon, 2, [-90, 90], [-180,180], 'filled');
mergedImage = landImage;

2 Read the worldrivers vector shapefile and convert it to an image.

9-42

Overlaying Multiple Layers

rivers = shaperead('worldrivers.shp','UseGeoCoords',true);
riverImage = vec2mtx([rivers.Lat], [rivers.Lon], landImage, refvec);

3 Merge the rivers with the land.

mergedImage(riverImage == 1) = 3;

4 Merge the rivers and land with the boundaries. You must first flip
mergedImage because it has a reference defined by a referencing vector,
where columns run from south to north. (The columns of WMS images run
from north to south.)

mergedImage = flipud(mergedImage);
mergedImage(boundariesImage(:,:,1) == 0) = 1;

5 Display the result.

figure
worldmap(mergedImage, R)
geoshow(mergedImage, R, 'DisplayType', 'texturemap')
colormap([.45 .60 .30; 0 0 0; 0 0.5 1; 0 0 1])

��	��
�!�H,�,�?��������$
�������� ���
����
�
�"�
�!�&?$"'

9-43

9 Creating Web Map Service Maps

Draping Topography and Ortho-Imagery Layers over
a Digital Elevation Model Layer
Read and display an aerial image overlapping the same region found in the
San Francisco South USGS 24 K Digital Elevation Model (DEM) file.

1 Uncompress the zip file and read it with the ugs24kdem function. Set the
geographic limits to the minimum and maximum values in the DEM file.

filenames = gunzip('sanfranciscos.dem.gz', tempdir);
demFilename = filenames{1};
[lat,lon,Z,header,profile] = usgs24kdem(demFilename, 1);
delete(demFilename);
Z(Z==0) = -1;
latlim = [min(lat(:)) max(lat(:))];
lonlim = [min(lon(:)) max(lon(:))];

2 Display the USGS 24K DEM data. Create map axes for the United States
and assign an appropriate elevation colormap. Use daspectm to display the
elevation data.

figure
usamap(latlim, lonlim)
geoshow(lat, lon, Z, 'DisplayType','surface')
demcmap(Z)
daspectm('m',1)
title('San Francisco South 24K DEM');

3 Set the point of view by adjusting the CameraPosition, CameraTarget,
and CameraAngle axes properties.

cameraPosition = [0.0102972 0.697919 39980.8];
cameraTarget = [-0.000307875 0.705072 231.46];
cameraAngle = 5.57428;
set(gca,'CameraPosition', cameraPosition, ...

'CameraTarget', cameraTarget, ...
'CameraViewAngle', cameraAngle)

9-44

Overlaying Multiple Layers

��	��
�!�H,�,�$
���������	��
!

4 The Microsoft TerraServer provides ortho-imagery and topography maps
from various regions of the United States. The ortho-imagery layer name
is UrbanArea, and the topographic layer name is DRG (short for Digital
Raster Graphic).

terraserver = wmsfind('terraservice.net','search','serverurl');
orthoLayer = terraserver.refine('UrbanArea');
topoLayer = terraserver.refine('DRG');

5 Construct a WebMapServer object for the ortho-imagery layer.

server = WebMapServer(orthoLayer.ServerURL);

6 Construct a WMSMapRequest object from the WebMapServer object and the
ortho-imagery layer. Use WMSMapRequest properties to modify different
aspects of your map request, such as geographic limits and image size. Set
the geographic limits to cover the same region as found in the DEM file.

mapRequest = WMSMapRequest(orthoLayer, server);
mapRequest.ServerURL = 'http://terraservice.net/ogcmap6.ashx?';
mapRequest.Latlim = latlim;
mapRequest.Lonlim = lonlim;

9-45

http://terraserver-usa.com/

9 Creating Web Map Service Maps

mapRequest.ImageHeight = size(Z,1);
mapRequest.ImageWidth = size(Z,2);

7 Request a map of the ortho-imagery layer.

orthoImage = server.getMap(mapRequest.RequestURL);

8 Request a map of the topographic layer.

mapRequest.Layer = topoLayer;
topoMap = server.getMap(mapRequest.RequestURL);

9 Drape the ortho-image onto the elevation data.

figure
usamap(latlim, lonlim)
geoshow(lat, lon, Z, ...

'DisplayType', 'surface', 'CData', orthoImage);
daspectm('m',1)
title('San Francisco Ortho-Image');
axis vis3d
set(gca,'CameraPosition', cameraPosition, ...

'CameraTarget', cameraTarget, ...
'CameraViewAngle', cameraAngle)

9-46

Overlaying Multiple Layers

��	��
�!�H,�,�$
���������	��
!
+
���
�
��������������&+'�4
����
��
�

10 Drape the topographic map onto the elevation data.

figure
usamap(latlim, lonlim)
geoshow(lat, lon, Z, ...

'DisplayType', 'surface', 'CData', topoMap);
daspectm('m',1)
title('San Francisco Topo Map');
axis vis3d
set(gca,'CameraPosition', cameraPosition, ...

'CameraTarget', cameraTarget, ...
'CameraViewAngle', cameraAngle)

9-47

9 Creating Web Map Service Maps

������	��
�!�H,�,�$
���������	��
!
+
���
�
��������������&+'�4
����
��
�

9-48

Animating Data Layers

Animating Data Layers

In this section...

“Creating Movie of Terra/MODIS Images” on page 9-49

“Creating an Animated GIF File” on page 9-51

“Animating Time-Lapse Radar Observations” on page 9-54

“Displaying Animation of Radar Images over GOES Backdrop” on page 9-57

Creating Movie of Terra/MODIS Images
You can create maps of the same geographic region at different times and
view them as a movie. Read and display a daily composite of visual images
from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS)
scenes captured during the month of December 2010.

1 Search the WMS Database for the MODIS layer.

neo = wmsfind('neowms*nasa', 'SearchField', 'serverurl');
modis = neo.refine('true*color*terra*modis');
modis = wmsupdate(modis);

2 Construct a WebMapServer object.

server = WebMapServer(modis.ServerURL);

3 Construct a WMSMapRequest object.

mapRequest = WMSMapRequest(modis, server);

4 The Extent field provides the information about how to retrieve individual
frames. You can request a single day since the extent is defined by day
('/P1D'). Note that for December 2010, the frames for December 8 and
December 31 are not available.

modis.Details.Dimension.Extent

5 Create an array of the available days.

days = 1:30;

9-49

9 Creating Web Map Service Maps

days(8) = [];

6 Set the value of startTime to December 01, 2010 and use a serial date
number.

time = '2010-12-01';
startTime = datenum(time);

7 Open a figure window with axes appropriate for the region specified by
the modis layer.

hFig = figure('Color', 'white');
worldmap(mapRequest.Latlim, mapRequest.Lonlim);

8 Save each frame into a video file.

videoFilename = 'modis_dec.avi';
writer = VideoWriter(videoFilename);
writer.FrameRate = 1;
writer.Quality = 100;
writer.open;

9 Retrieve a map of the modis layer for each requested day. Set the Time
property to the day number. When obtaining the data from the server, use
a try/catch statement to ignore either data not found on the server or
any error issued by the server. Set startTime to one day less for correct
indexing.

startTime = startTime - 1;
for k = days

try
mapRequest.Time = startTime + k;
timeStr = datestr(mapRequest.Time);
dailyImage = server.getMap(mapRequest.RequestURL);
geoshow(dailyImage, mapRequest.RasterRef);
title({mapRequest.Layer.LayerTitle, timeStr}, ...

'Interpreter', 'none', 'FontWeight', 'bold')
shg
frame = getframe(hFig);
writer.writeVideo(frame);

catch e

9-50

Animating Data Layers

fprintf(['Server error: %s.\n', ...
'Ignoring frame number %d on day %s.\n'], ...
e.message, k, timeStr)

end
drawnow
shg

end
writer.close

10 Read in all video frames.

v = VideoReader(videoFilename);
vidFrames = read(v);
numFrames = get(v, 'NumberOfFrames');

11 Create a MATLAB movie structure from the video frames.

frames = struct('cdata', [], 'colormap', []);
frames(numFrames) = frames(1);
for k = 1 : numFrames

frames(k).cdata = vidFrames(:,:,:,k);
frames(k).colormap = [];

end

12 Playback movie once at the video’s frame rate.

movie(hFig, frames, 1, v.FrameRate)

Creating an Animated GIF File
Read and display an animation of the Larsen Ice Shelf experiencing a
dramatic collapse between January 31 and March 7, 2002.

1 Search the WMS Database for the phrase “Larsen Ice Shelf.”

iceLayer = wmsfind('Larsen Ice Shelf');

Try the first layer.

2 Construct a WebMapServer object.

server = WebMapServer(iceLayer(1).ServerURL);

9-51

9 Creating Web Map Service Maps

3 Use the WebMapServer.updateLayers method to synchronize the layer
with the WMS source server. Retrieve the most recent data and fill in the
Abstract, CoordRefSysCodes, and Details fields.

iceLayer = server.updateLayers(iceLayer(1));

4 View the abstract.

fprintf('%s\n', iceLayer(1).Abstract)

5 Create the WMSMapRequest object.

request = WMSMapRequest(iceLayer(1), server);

6 Because you have updated your layer, the Details field now has content.
Click Details in the Variable Editor. Then, click Dimension. The name
of the dimension is 'time'. Click Extent. The Extent field provides the
available values for a dimension, in this case time. Save this information
by entering the following at the command line:

extent = [',' iceLayer.Details.Dimension.Extent, ','];

7 Calculate the number of required frames. (The extent contains a comma
before the first frame and after the last frame. To obtain the number of
frames, subtract 1.)

frameIndex = strfind(extent, ',');
numFrames = numel(frameIndex) - 1;

8 Open a figure window and set up a map axes with appropriate geographic
limits.

h = figure;
worldmap(request.Latlim, request.Lonlim)

9 Set the map axes properties. MLineLocation establishes the interval
between displayed grid meridians. MLabelParallel determines the
parallel where the labels appear.

setm(gca,'MLineLocation', 1, 'MLabelLocation', 1, ...
'MLabelParallel',-67.5, 'LabelRotation', 'off');

9-52

Animating Data Layers

10 Initialize the value of animated to 0.

animated(1,1,1,numFrames) = 0;

11 Display the image of the Larsen Ice Shelf on different days.

for k=1:numFrames
request.Time = extent(frameIndex(k)+1:frameIndex(k+1)-1);
iceImage = server.getMap(request.RequestURL);
geoshow(iceImage, request.RasterRef)
title(request.Time, 'Interpreter', 'none')
drawnow
shg
frame = getframe(h);
if k == 1

[animated, cmap] = rgb2ind(frame.cdata, 256, 'nodither');
else

animated(:,:,1,k) = rgb2ind(frame.cdata, cmap, 'nodither');
end

end

12 Save and then view the animated GIF file.

filename = 'wmsanimated.gif';
imwrite(animated, cmap, filename, 'DelayTime', 1.5, ...

'LoopCount', inf);
web(filename)

9-53

9 Creating Web Map Service Maps

��	��
�!�?"�"E$����������
�����%���
��
����
������G��	���-��������	���

Snapshot from Animation of Larsen Ice Shelf

Animating Time-Lapse Radar Observations
Display Next-Generation Radar (NEXRAD) images for the United States
using data from the Iowa Environmental Mesonet (IEM) Web map server.
The server stores layers covering the past 45 minutes up to the present time
in increments of 5 minutes. Read and display the merged layers.

1 Find layers in the WMS Database that include 'mesonet' and 'nexrad'
in their ServerURL fields.

mesonet = wmsfind('mesonet*nexrad', 'SearchField', 'serverurl');

2 NEXRAD Base Reflect Current ('nexrad-n0r') measures the intensity of
precipitation. Refine your search to include only layers with this phrase
in one of the search fields.

nexrad = mesonet.refine('nexrad-n0r', 'SearchField', 'any');

9-54

Animating Data Layers

3 Update your nexrad layer to fill in all fields and obtain most recent data.

nexrad = wmsupdate(nexrad, 'AllowMultipleServers', true);

4 Remove the 900913 layer because it is intended for Google Maps overlay.
Also remove the WMST layer because it contains data for different times.

index = strcmpi('nexrad-n0r-900913',{nexrad.LayerName});
nexrad(index) = [];
index = strcmpi('nexrad-n0r-wmst',{nexrad.LayerName});
nexrad(index) = [];

5 'conus' represents the conterminous 48 U.S. states (all except Hawaii
and Alaska). Use the usamap function to construct a map axes for the
conterminous states. Read in the nexrad layers.

region = 'conus';
figure
usamap(region)
mstruct = gcm;
latlim = mstruct.maplatlimit;
lonlim = mstruct.maplonlimit;
[A, R] = wmsread(nexrad, 'Latlim', latlim, 'Lonlim', lonlim, ...

'Transparent', true);

6 Display the NEXRAD merged layers map. Overlay with United States
state boundary polygons.

geoshow(A, R);
geoshow('usastatehi.shp', 'FaceColor', 'none');
title({'NEXRAD Radar Map', 'Merged Layers'});

9-55

9 Creating Web Map Service Maps

��	��
�!�?*""��������������
�H���
����!

7 Loop through the sequence of time-lapse radar observations.

hfig = figure;
usamap(region)
geoshow('usastatehi.shp', 'FaceColor', 'none');
numFrames = numel(nexrad);
frames = struct('cdata', [], 'colormap', []);
frames(numFrames) = frames;
hmap = [];
frameIndex = 0;
for k = numFrames:-1:1

frameIndex = frameIndex + 1;
delete(hmap)
[A, R] = wmsread(nexrad(k), 'Latlim', latlim, 'Lonlim', lonlim);
hmap = geoshow(A, R);
title(nexrad(k).LayerName)
drawnow
frames(frameIndex) = getframe(hfig);

9-56

Animating Data Layers

end

8 Create an array to write out as an animated GIF file.

animated(1,1,1,numFrames) = 0;
for k=1:numFrames

if k == 1
[animated, cmap] = rgb2ind(frames(k).cdata, 256, 'nodither');

else
animated(:,:,1,k) = ...

rgb2ind(frames(k).cdata, cmap, 'nodither');
end

end

9 View the animated GIF file.

filename = 'wmsnexrad.gif';
imwrite(animated, cmap, filename, 'DelayTime', 1.5, ...

'LoopCount', inf);
web(filename)

Displaying Animation of Radar Images over GOES
Backdrop
Display NEXRAD radar images for the past 24 hours, sampled at one-hour
intervals, for the United States using data from the IEM WMS server. Use
the JPL Daily Planet layer as the backdrop.

1 Find the 'nexrad-n0r-wmst' layer and update it.

wmst = wmsfind('nexrad-n0r-wmst', 'SearchField', 'layername');
wmst = wmsupdate(wmst);

2 Find a generated CONUS composite of GOES IR imagery and update it.

goes = wmsfind('goes*conus*ir', 'SearchField', 'layername');
goes = wmsupdate(goes);

3 Create a figure with the desired geographic extent.

hfig = figure;
region = 'conus';

9-57

9 Creating Web Map Service Maps

usamap(region)
mstruct = gcm;
latlim = mstruct.maplatlimit;
lonlim = mstruct.maplonlimit;

4 Read the GOES layer as a backdrop image.

cellsize = .1;
[backdrop, R] = wmsread(goes, 'ImageFormat', 'image/png', ...

'Latlim', latlim, 'Lonlim', lonlim, 'Cellsize', cellsize);

5 Calculate current time minus 24 hours and set up frames to hold the data
from getframe.

now_m24 = datestr(now-1);
hour_m24 = [now_m24(1:end-5) '00:00'];
hour = datenum(hour_m24);
hmap = [];
numFrames = 24;
frames = struct('cdata', [], 'colormap', []);
frames(numFrames) = frames;

6 For each hour, obtain the hourly NEXRAD map data and combine it with a
copy of the backdrop. Because of how this Web server handles PNG format,
the resulting map data has an image with class double. Thus, you must
convert it to uint8 before merging.

geoshow('usastatehi.shp', 'FaceColor', 'none');
black = [0,0,0];
threshold = 0;
for k=1:numFrames

time = datestr(hour);
[A, R] = wmsread(wmst, 'Latlim', latlim, 'Lonlim', lonlim, ...

'Time', time, 'CellSize', cellsize, ...
'BackgroundColor', black, 'ImageFormat', 'image/png');

delete(hmap)
index = any(A > threshold, 3);
combination = backdrop;
index = cat(3,index,index,index);
combination(index) = uint8(255*A(index));

9-58

Animating Data Layers

hmap = geoshow(combination, R);
title({wmst.LayerName, time})
drawnow
frames(k) = getframe(hfig);
hour = hour + 1/24;

end

7 View the movie loop.

numTimes = 10;
fps = 1.5;
movie(hfig, frames, numTimes, fps);

9-59

9 Creating Web Map Service Maps

Retrieving Elevation Data

In this section...

“Merge Elevation Data with Rasterized Vector Data” on page 9-60

“Display a Merged Elevation and Bathymetry Layer (SRTM30 Plus)” on
page 9-63

“Drape a Landsat Image onto Elevation Data” on page 9-67

A WMS server typically renders a layer as an RGB image. To have the server
return the underlying data, rather than the pictorial representation, often
requires you to make a special request. In such cases, you may need to create
either a Web Coverage Service (WCS) request, for raster data, or a Web
Feature Service (WFS) request, for vector data. In some rare cases, you can
request the actual data from a WMS server.

The following sections illustrate how to obtain elevation data from the NASA
WorldWind server (http://www.nasa.network.com/elev) which renders
layers in the band-interleaved (image/bil) format.

Merge Elevation Data with Rasterized Vector Data
The NASA WorldWind WMS server contains a wide selection of layers
containing elevation data. Follow this example to merge elevation data with a
raster map containing national boundaries.

1 Find the layers from the NASA WorldWind server.

layers = wmsfind('nasa.network*elev', 'SearchField', 'serverurl');
layers = wmsupdate(layers);

2 Display the name and title of each layer.

disp(layers,'Properties',{'LayerTitle','LayerName'})

11x1 WMSLayer

Properties:
Index: 1

9-60

Retrieving Elevation Data

LayerTitle: 'SRTM30 with Bathymetry (900m) merged with
global ASTER (30m)'

LayerName: 'EarthAsterElevations30m'

Index: 2
LayerTitle: 'USGS NED 30m'
LayerName: 'NED'

.

.

.

Index: 10
LayerTitle: 'SRTM30 Plus'
LayerName: 'srtm30'

Index: 11
LayerTitle: 'USGS NED 10m'
LayerName: 'usgs_ned_10m'

3 Select the 'EarthAsterElevations30m' layer containing SRTM30 data
merged with global ASTER data.

aster = layers.refine('earthaster', 'SearchField', 'layername');

4 Define the region surrounding Afghanistan.

latlim = [25 40];
lonlim = [55 80];

5 Obtain the data at a 1-minute sampling interval.

cellSize = dms2degrees([0,1,0]);
[ZA, RA] = wmsread(aster, 'Latlim', latlim, 'Lonlim', lonlim, ...

'CellSize', cellSize);

6 Display the elevation data as a texture map.

figure('Renderer','zbuffer')
worldmap('Afghanistan')
geoshow(ZA, RA, 'DisplayType', 'texturemap')

9-61

9 Creating Web Map Service Maps

demcmap(double(ZA))
title({'Afghanistan and Surrounding Region', aster.LayerTitle});

��	��
�!�?"�"�C����C���

7 Embed national boundaries from the NASA Globe Visualization Server
into the elevation map.

vizglobe = wmsfind('viz.globe', 'SearchField', 'serverurl');
boundaries = vizglobe.refine('national*bound');
B = wmsread(boundaries, 'Latlim', latlim, ...

'Lonlim', lonlim, 'CellSize', cellSize);
ZB = ZA;
ZB(B(:,:,1) == 0) = min(ZA(:));
geoshow(ZB, RA, 'DisplayType', 'texturemap')

9-62

Retrieving Elevation Data

��	��
�!�?"�"�C����C���
����?"�"E$����������
�����%���
��
����
������G��	���-��������	���

Display a Merged Elevation and Bathymetry Layer
(SRTM30 Plus)
The Shuttle Radar Topography Mission (SRTM) is a project led by the U.S.
National Geospatial-Intelligence Agency (NGA) and NASA. SRTM has created
a high-resolution, digital, topographic database of Earth. The SRTM30 Plus
data set combines GTOPO30, SRTM-derived land elevation and Sandwell
bathymetry data from the University of California at San Diego.

Follow this example to read and display the SRTM30 Plus layer for the Gulf
of Maine at a 30 arc-second sampling interval using data from the WorldWind
server.

1 Find and update the 'srtm30' layer in the WMS Database. The 'srtm30'
layer name from NASA WorldWind is the name for the SRTM30 Plus data
set.

wldwind = wmsfind('nasa.network*elev', 'SearchField', 'serverurl');
wldwind = wmsupdate(wldwind);

9-63

9 Creating Web Map Service Maps

srtmplus = wldwind.refine('srtm30', 'SearchField', 'layername');

2 Set the desired geographic limits.

latlim = [40 46];
lonlim = [-71 -65];

3 Set the sampling interval to 30 arc-seconds.

samplesPerInterval = dms2degrees([0 0 30]);

4 Set the ImageFormat to image/bil.

imageFormat = 'image/bil';

5 Request the map from the NASA server.

[Z1, R1] = wmsread(srtmplus, 'Latlim', latlim, ...
'Lonlim', lonlim, 'ImageFormat', imageFormat, ...
'CellSize', samplesPerInterval);

6 Open a figure window and set up a map axes with geographic limits that
match the desired limits. The referencing matrix R1 ties the intrinsic
coordinates of the raster map to the EPSG:4326 geographic coordinate
system. Create a colormap appropriate for elevation data. Then, display
and contour the map at sea level (0 m).

figure('Renderer','zbuffer')
worldmap(Z1, R1)
geoshow(Z1, R1, 'DisplayType', 'texturemap')
demcmap(double(Z1))
contourm(double(Z1), R1, [0 0], 'Color', 'black')
colorbar
title ({'Gulf of Maine', srtmplus.LayerTitle}, 'Interpreter','none')

9-64

Retrieving Elevation Data

7 Compare the NASA WorldWind SRTM30 Plus layer with the SRTM30
with Bathymetry (900m) merged with SRTM3 V4.1 (90m) and USGS NED
(30m) (mergedSrtm) layer.

mergedSrtm = wldwind.refine('mergedSrtm');

8 Request the map from the NASA WorldWind server.

[Z2, R2] = wmsread(mergedSrtm, 'Latlim', latlim, 'Lonlim', lonlim, ...
'CellSize', samplesPerInterval, 'ImageFormat', 'image/bil');

9 Display the data.

figure('Renderer','zbuffer')
worldmap(Z2, R2)
geoshow(Z2, R2, 'DisplayType', 'texturemap')
demcmap(double(Z2))
contourm(double(Z2), R2, [0 0], 'Color', 'black')
colorbar
title ({'Gulf of Maine', mergedSrtm.LayerTitle})

9-65

9 Creating Web Map Service Maps

10 Compare the results.

fprintf(...
'\nSRTM30 Plus - %s\nMinimum value: %d\nMaximum value: %d\n', ...
srtmplus.LayerName, min(Z1(:)), max(Z1(:)));

fprintf(...
'\nSRTM30 Plus Merged - %s\nMinimum value: %d\nMaximum value: %d\n'
mergedSrtm.LayerName, min(Z2(:)), max(Z2(:)));

11 The output appears as follows:

SRTM30 Plus - srtm30
Minimum value: -4543
Maximum value: 1463

Merged SRTM30 Plus - mergedSrtm
Minimum value: -4543
Maximum value: 1463

9-66

Retrieving Elevation Data

Drape a Landsat Image onto Elevation Data
For some applications, you may want to merge elevation data with imagery.
Follow this example to drape Landsat imagery onto elevation data from the
USGS National Elevation Dataset (NED) for an area surrounding the Grand
Canyon. Read the landsat layer from the USGS EROS Web Map server and
the USGS us_ned layer from the NASA WorldWind server.

1 Obtain the layers of interest.

landsat = wmsfind('landsat', 'SearchField', 'any');
global_mosaic = landsat.refine('LANDSAT_LZ77', 'MatchType', 'exact');
layers = wmsfind('nasa.network', 'SearchField', 'serverurl');
us_ned = layers.refine('usgs ned 30');

2 Assign geographic extent and image size.

latlim = [36 36.23];
lonlim = [-113.36 -113.13];
imageHeight = 575;
imageWidth = 575;

3 Read the global_mosaic layer.

A = wmsread(global_mosaic, 'Latlim', latlim, 'Lonlim', lonlim, ...
'ImageHeight', imageHeight, 'ImageWidth', imageWidth);

4 Read the USGS us_ned layer.

[Z, R] = wmsread(us_ned, 'ImageFormat', 'image/bil', ...
'Latlim', latlim, 'Lonlim', lonlim, ...
'ImageHeight', imageHeight, 'ImageWidth', imageWidth);

5 Drape the Landsat image onto the elevation data.

figure('Renderer','opengl')
usamap(latlim, lonlim)
framem off; mlabel off; plabel off; gridm off
geoshow(double(Z), R, 'DisplayType', 'surface', 'CData', A);
daspectm('m',1)
title({'Grand Canyon', 'USGS NED and Landsat Global Mosaic'}, ...

'FontSize',8);

9-67

9 Creating Web Map Service Maps

axis vis3d

6 Assign camera parameters.

cameraPosition = [0.015136 0.67424 -72027];
cameraTarget = [-1.2904e-005 0.67187 3054.6];
cameraViewAngle = 8.1561;
cameraUpVector = [0.602132 0.0939748 5.05123e+006];

7 Set camera and light parameters.

set(gca,'CameraPosition', cameraPosition, ...
'CameraTarget', cameraTarget, ...
'CameraViewAngle', cameraViewAngle, ...
'CameraUpVector', cameraUpVector);

lightHandle = camlight;
camLightPosition = [0.0011253 0.22101 -4.1188e+006];
set(lightHandle, 'Position', camLightPosition);

9-68

Retrieving Elevation Data

9-69

9 Creating Web Map Service Maps

Saving Favorite Servers
You can save your favorite layers for easy access in the future. Use wmsupdate
to fill in the Abstract, CoordRefSysCodes, and Details fields, and then save
the layers. The next example demonstrates how to make a mini-database
from the NASA, WHOI, and ESA servers.

1 Find the servers and update all fields.

nasa = wmsfind('nasa','SearchField','serverurl');
whoi = wmsfind('whoi','SearchField','serverurl');
esa = wmsfind('esa.int','SearchField','serverurl');
favoriteLayers = [nasa; whoi; esa];
favoriteLayers = wmsupdate(favoriteLayers, ...

'AllowMultipleServers', true);
favoriteServers = favoriteLayers.servers;

2 Save your favorite layers in a MAT-file.

save favorites favoriteLayers

3 Search within your favorite layers for 'wind speed'. You have updated all
fields, so you can search within any field, including the Abstract.

windSpeed = favoriteLayers.refine('wind speed','SearchFields','any')

In the following output, the phrase wind speed does not occur in the
LayerTitle or LayerName fields, but it does occur in the Abstract.

Sample Output:

Index: 14
ServerTitle: 'NASA SVS Image Server'

ServerURL: 'http://svs.gsfc.nasa.gov/cgi-bin/wms?'
LayerTitle: 'Hurricane Dennis (Sequence)'
LayerName: '3194_22037'

Latlim: [8.9033 42.1490]
Lonlim: [-95.7348 -62.7839]

Abstract: 'The formation of Hurricane Dennis on July 5 ...
made that the earliest date on record that four named storms ...
formed in the Atlantic basin....After re-emerging over open ...

9-70

Saving Favorite Servers

water, Dennis re-strengthened into a dangerous Category 4 ...
hurricane with top wind speeds of 233 kilometers per hour (145 mph)...
CoordRefSysCodes: {'EPSG:4326'}

Details: [1x1 struct]

9-71

9 Creating Web Map Service Maps

Exploring Other Layers from a Server
You may find a layer you like in the WMS Database and then want to find
other layers on the same server.

1 Use the wmsinfo function to return the contents of the capabilities
document as a WMSCapabilities object. A capabilities document is an
XML document containing metadata describing the geographic content
offered by a server.

serverURL = 'http://webapps.datafed.net/AQS_H.ogc?';
capabilities = wmsinfo(serverURL);

2 View the layer names.

capabilities.LayerNames

Sample Output:

ans =

'CO'
'NO2'
'NOX'
'NOY'
'O3'
'SO2'
'pm10'

3 Read the Carbon Monoxide ('CO') layer.

layer = capabilities.Layer.refine('CO');
[A,R] = wmsread(layer,'cellsize',.1,'ImageFormat','image/png');

4 Set the longitude and latitude limits to the values specified for the layer.

latlim = layer.Latlim;
lonlim = layer.Lonlim;

5 Display the map.

figure

9-72

Exploring Other Layers from a Server

usamap(layer.Latlim, layer.Lonlim)
geoshow('usastatehi.shp','FaceColor','none','EdgeColor','black')
geoshow(A,R)
title(layer.LayerTitle)

��	��
�!�@�"

6 Examine the Style field. (Open layer and then Details and then Style.)
There are two structures. The style of the first one is set to 'data'. Read
the layer again with the StyleName set to 'data' and the cell size set to
0.1 degree resolution. (When the style is set to 'data', the map does not
include a legend.)

[A,R] = wmsread(layer,'cellsize',.1, ...
'ImageFormat','image/png','StyleName','data');

figure
usamap(layer.Latlim, layer.Lonlim)
geoshow('usastatehi.shp','FaceColor','none','EdgeColor','black')
geoshow(A,R)
title(layer.LayerTitle)

9-73

9 Creating Web Map Service Maps

��	��
�!�@�"

9-74

Writing a KML File

Writing a KML File
Some WMS server implementations, such as GeoServer, can render their
maps in a non-image format, such as KML. KML is an XML dialect used
by Google Earth and Google Maps browsers. The WebMapServer.getMap
method and the wmsread function do not allow you to use the KML format
because they import only standard graphics image formats. Work around this
limitation by using the WMSMapRequest.RequestURL property.

1 Search the WMS Database for layers on any GeoServer. Refine to include
only the layers from the MassGIS server. Refine that list to return a FEMA
Flood Zone layer.

geoserver = wmsfind('geoserver', 'SearchField', 'any');
massgis = geoserver.refine('massgis*wms', 'SearchField', ...

'serverurl');
massgis = wmsupdate(massgis);
floodzone = massgis.refine('FEMA Flood Zones', 'SearchField', ...

'LayerTitle');
floodzone = floodzone(1);

2 Set geographic limits for a region around Boston, Massachusetts.

latlim = [42.305 42.417];
lonlim = [-71.131 -70.99];

3 Construct a WMSMapRequest object and set the geographic limits.

request = WMSMapRequest(floodzone);
request.Latlim = latlim;
request.Lonlim = lonlim;

4 Obtain the graphics image from the server.

[A, R] = wmsread(request.RequestURL);

5 Display the image in a figure window.

figure
usamap(A, R)
geoshow(A, R)

9-75

9 Creating Web Map Service Maps

6 Request an image format that opens in Google Earth.

request.ImageFormat = 'application/vnd.google-earth.kml+xml';

7 Use the urlwrite function to write out a KML file.

filename = 'floodzone.kml';
urlwrite(request.RequestURL, filename);

8 Open the file with Google Earth to view. On Windows platforms, display
the KML file with:

winopen(filename)

For UNIX® and Mac® users, display the KML file with:

cmd = 'googleearth ';
fullfilename = fullfile(pwd, filename);
system([cmd fullfilename])

9-76

Searching for Layers Outside the Database

Searching for Layers Outside the Database
You can search for layers by using your Web browser rather than by using
the WMS Database. For example, this approach allows you to view layers
developed more recently than the last software release.

1 To search for layers outside the WMS Database, use your favorite search
engine. If you are using Google, select Images and enter the following in
the search box: getmap wms.

2 View the images to choose a map. Click the map link and find the WMS
GetCapabilities request somewhere on the page. If you cannot find a
GetCapabilities request, try another map.

For this example, the syntax for the URL of the WMS GetCapabilities
request appears as follows:

url = ['http://sampleserver1.arcgisonline.com/' ...
'ArcGIS/services/Specialty/ESRI_StatesCitiesRivers_USA/' ...
'MapServer/WMSServer?service=WMS&request=GetCapabilities' ...
'&version=1.3.0'];

3 After you obtain the URL, you can use wmsinfo to return the capabilities
document.

c = wmsinfo(url);

4 Next, read in a layer and display it as a map.

[A,R] = wmsread(c.Layer(1), ...
'BackgroundColor', [0,0,255], 'ImageFormat', 'image/png');

figure
usamap(c.Layer(1).Latlim, c.Layer(1).Lonlim)
geoshow(A,R)

9-77

9 Creating Web Map Service Maps

Hosting Your Own WMS Server
You can host your own WMS server and share the maps you create with
others. For free software and instructions, see the GeoServer or MapServer
Web sites.

9-78

http://geoserver.org/display/GEOS/What+is+GeoServer
http://mapserver.org/

Common Problems with WMS Servers

Common Problems with WMS Servers

In this section...

“Connection Errors” on page 9-79

“Wrong Scale” on page 9-81

“Problems with Geographic Limits” on page 9-82

“Problems with Server Changing LayerName” on page 9-82

“Non-EPSG:4326 Coordinate Reference Systems” on page 9-83

“Map Not Returned” on page 9-83

“Unsupported WMS Version” on page 9-84

“Other Unrecoverable Server Errors” on page 9-85

Connection Errors
One of the challenges of working with WMS is that sometimes you can have
trouble connecting to a server.

Time-Out Error
A server may issue a time-out error such as:

Connection timed out: connect

Or

Read timed out

Workaround: Try setting the 'TimeoutInSeconds' parameter to a larger
value. The time-out setting defaults to 60 seconds. (The functions wmsread,
wmsinfo, and wmsupdate all have 'TimeoutInSeconds' parameters.)

Server No Longer Provides Full WMS Services
The NASA Jet Propulsion Laboratory (JPL) server may issue the following
error message:

This server no longer provides full WMS services!

9-79

9 Creating Web Map Service Maps

The DataFed server, http://webapps.datafed.net/OnEarth_JPL.ogc?,
cascades layers from the JPL server and may issue the following error
message:

Error in Execution. Cannot fetch url.

Workaround: Use a TiledWMS URL or find a different server.

The JPL Global Imagery Service server,
http://onearth.jpl.nasa.gov/wms.cgi?, is no longer providing
full WMS services for any of the datasets. Any server (for example,
http://webapps.datafed.net/OnEarth_JPL.ogc?) that cascades data from
this server is also affected by the change.

A small subset of the data can be accessed using a non-standard TiledWMS
request. The available tiled patterns can be found at:

http://pat.jpl.nasa.gov/wms.cgi?request=GetTileService

The WMS parameters must be in the exact order. If
you wish to obtain a tile, you can prepend the prefix,
'http://onearth.jpl.nasa.gov/wms.cgi?/SERVICE=WMS&' in
front of the request found in the CDATA section of the GetTileService request.

For example:

url = ['http://onearth.jpl.nasa.gov/wms.cgi?/SERVICE=WMS&' ...
'request=GetMap&layers=global_mosaic&srs=EPSG:4326&' ...
'format=image/jpeg&styles=visual&width=512&height=512&' ...
'bbox=-180,58,-148,90'];

[A, R] = wmsread(url);

Elevation layers from onearth.jpl.nasa.gov can be replaced with layers
from the NASA WorldWind server (http://www.nasa.network.com/elev?).
The Blue Marble layer can be replaced with a Blue Marble layer from
the NASA Goddard Space Flight Center WMS SVS Image Server
(http://svs.gsfc.nasa.gov/cgi-bin/wms?) or the Blue Marble: Next
Generation layer from the NASA Earth Observations (NEO) WMS Server
(http://neowms.sci.gsfc.nasa.gov/wms/wms?).

9-80

Common Problems with WMS Servers

The Daily Planet layer can be replaced with the 'True Color (1 day -
Terra/MODIS Rapid Response)' layer from the NASA Earth Observations
(NEO) WMS server.

HTTP Response Code 500
In some cases, the server becomes temporarily unavailable or the WMS
server application experiences some type of issue. The server issues an HTTP
response code of 500, such as:

Server returned HTTP response code: 500 for URL: http://xyz.com ...

Workaround: Try again later. Also try setting a different 'ImageFormat'
parameter.

WMSServlet Removed
If the columbo.nrlssc.navy.mil server issues an error such as:

WebMapServer cannot communicate to the host columbo.nrlssc.navy.mil.
The host is unknown.

This message indicates that the server it is trying to access is no longer
available.

Workaround: Choose a different layer.

Wrong Scale
The columbo.nrlssc.navy.mil server often throws this error message:

This layer is not visible for this scale. The maximum valid scale
is approximately X. Zoom in and try again if desired. The scale of
the image requested is Y.

X and Y represent specific values that vary from layer to layer.

Workaround: Some of the WMS sources this server accesses have map
layers sensitive to the requested scale. Zoom in (choose a smaller region of
interest), or zoom out (choose a larger region of interest). Alternatively, you
can select a larger output image size to view the layer at the appropriate scale.

9-81

9 Creating Web Map Service Maps

Problems with Geographic Limits
Some servers do not follow the guidelines of the OGC specification regarding
latitude and longitude limits.

Latlim and Lonlim in Descending Order
The OGC specification requires, and the WMS functions expect, that the
limits are ascending. Some sites, however, have descending limits. As a
result, you may get this error message:

??? Error using ==> WMSMapRequest>validateLimit at 1313
Expected the elements of 'Latlim' to be in ascending order.

Workaround: To address this problem, set the Latlim and Lonlim properties
of WMSLayer:

layer = wmsfind('SampleServer.com', 'SearchField', 'serverurl');
layer = wmsupdate(layer);
latlim = [min(layer.Latlim), max(layer.Latlim)];
lonlim = [min(layer.Lonlim), max(layer.Lonlim)];
layer.Latlim = [max([-90, latlim(1)]), min([90, latlim(2)])];
layer.Lonlim = [max([-180, lonlim(1)]), min([180, lonlim(2)])];
[A,R] = wmsread(layer);

Update your layer before setting the limits. Otherwise, wmsread updates the
limits from the server, and you once again have descending limits.

Limits Exceed Bounds
Some servers have limits that exceed the bounds of [-180 180] for longitude
and [-90 90] for latitude.

Workaround: To address this problem, follow the same procedure outlined
in “Latlim and Lonlim in Descending Order” on page 9-82.

Problems with Server Changing LayerName
In most cases, the updated layer returned by wmsupdate should have
ServerURL and LayerName properties that match those of the layer
you enter as input. In some cases when the layer is updated from the
columbo.nrlssc.navy.mil server, the server returns a layer with a different

9-82

Common Problems with WMS Servers

LayerName, but the ServerURL and LayerTitle are the same. The layers from
the columbo.nrlssc.navy.mil server have names such as 'X:Y', where X
and Y are ASCII numbers. Since the time of your last update, a layer has been
added to or removed from the server causing a shift in the sequence of layers.
Since the LayerName property is constructed with ASCII numbers based on
the layer’s position in this sequence, the LayerName property has changed.
For layers from the columbo.nrlssci.navy.mil server, wmsupdate matches
the LayerTitle property rather than the LayerName property.

Non-EPSG:4326 Coordinate Reference Systems
Some layers are not defined in the EPSG:4326 coordinate reference system.
You cannot read these layers with the wmsread function.

Workaround: Use the WMSMapRequest class to construct a request URL and
the WebMapServer.getMap method to read the layer. See Understanding
Coordinate Reference System Codes and Retrieving Your Map with
WebMapServer.getMap for more information.

Map Not Returned
Sometimes you can connect to the WMS server, but you do not receive the
map you are expecting.

Blank Map Returned
A server may return a blank map.

Workaround: You can change the scale of your map; either increase the
image height and width or change the geographic bounds. Another possibility
is that your requested geographic extent lies outside the extent of the layer, in
which case you should change the extent of your request. A third possibility
is that you have the wrong image format selected; in this case, change the
'ImageFormat' parameter.

HTML File Returned
You may receive this error message:

The server returned an HTML file instead of an image file.

9-83

9 Creating Web Map Service Maps

Workaround: Follow the directions in the error message. The following
example, which uses a sample URL, illustrates the type of error message
you receive.

% Example command.
>> [A,R] = wmsread('http://www.mathworks.com?&BBOX=-180,-90,180,90...

&CRS=EPSG:4326');

Sample error message:

??? Error using ==> WebMapServer>issueReadGetMapError at 832
The server returned an HTML file instead of an image file.
You may view the complete error message by issuing the command,
web('http://www.mathworks.com?&BBOX=-180,-90,180,90&CRS=EPSG:4326')
or
urlread('http://www.mathworks.com?&BBOX=-180,-90,180,90...

&CRS=EPSG:4326').

XML File Returned
The server issues a very long error message, beginning with the following
phrase:

An error occurred while attempting to get the map from the server.
The error returned is <?xml version="1.0" encoding="utf-8"?> ...

Workaround: This problem occurs because the server breaks with the
requirements of the OGC standard and returns the XML capabilities
document rather than the requested map. Choose a different layer or server.

Unsupported WMS Version
In rare cases, the server uses a different and unsupported WMS version. In
this case, you receive an error message such as:

The WMS version, '1.2.0', listed in layer.Details.Version is not
supported by the server. The supported versions are: '1.0.0' '1.1.0'
'1.1.1' '1.3.0' .

Workaround: Choose a different server.

9-84

Common Problems with WMS Servers

Other Unrecoverable Server Errors
The server issues an error indicating that no correction or workaround exists.
These cases result in the following types of error messages:

Server redirected too many times (20)

An error occurred while attempting to parse the XML capabilities
document from the server.

Unexpected end of file from server

An error occurred while attempting to get the map from the server.
The server returned a map containing no data.

9-85

9 Creating Web Map Service Maps

9-86

10

Mapping Applications

This chapter describes several types of numerical applications for geospatial
data, including computing and spatial statistics, and calculating tracks,
routes, and other information useful for solving navigation problems.

• “Geographic Statistics” on page 10-2

• “Navigation” on page 10-11

10 Mapping Applications

Geographic Statistics

In this section...

“Statistics for Point Locations on a Sphere” on page 10-2

“Geographic Means” on page 10-2

“Geographic Standard Deviation” on page 10-4

“Equal-Areas in Geographic Statistics” on page 10-7

Statistics for Point Locations on a Sphere
Certain Mapping Toolbox functions compute basic geographical measures
for spatial analysis and for filtering and conditioning data. Since MATLAB
functions can compute statistics such as means, medians, and variances,
why not use those functions in the toolbox? First of all, classical statistical
formulas typically assume that data is one-dimensional (and, often, normally
distributed). Because this is not true for geospatial data, spatial analysts
have developed statistical measures that extend conventional statistics to
higher dimensions.

Second, such formulas generally assume that data occupies a two-dimensional
Cartesian coordinate system. Computing statistics for geospatial data with
geographic coordinates as if it were in a Cartesian framework can give
statistically inappropriate results. While this assumption can sometimes yield
reasonable numerical approximations within small geographic regions, for
larger areas it can lead to incorrect conclusions because of distance measures
and area assumptions that are inappropriate for spheres and spheroids.
Mapping Toolbox functions appropriately compute statistics for geospatial
data, avoiding these potential pitfalls.

Geographic Means
Consider the problem of calculating the mean position of a collection of
geographic points. Taking the arithmetical mean of the latitudes and
longitudes using the standard MATLAB mean function may seem reasonable,
but doing this could yield misleading results.

10-2

Geographic Statistics

Take two points at the same latitude, 180º apart in longitude, for example
(30ºN,90ºW) and (30ºN,90ºE). The mean latitude is (30+30)/2=30, which seems
right. Similarly, the mean longitude must be (90+(-90))/2=0. However, as
one can also express 90ºW as 270ºE, (90+270)/2=180 is also a valid mean
longitude. Thus there are two correct answers, the prime meridian and
the dateline. This demonstrates how the sphericity of the Earth introduces
subtleties into spatial statistics.

This problem is further complicated when some points are at different
latitudes. Because a degree of longitude at the Arctic Circle covers a much
smaller distance than a degree at the equator, distance between points having
a given difference in longitude varies by latitude.

Is in fact 30ºN the right mean latitude in the first example? The mean
position of two points should be equidistant from those two points, and should
also minimize the total distance. Does (30ºN,0º) satisfy these criteria?

dist1 = distance(30,90,30,0)
dist1 =
75.5225

dist2 = distance(30,-90,30,0)
dist2 =
75.5225

Consider a third point, (lat,lon), that is also equidistant from the above
two points, but at a lesser distance:

dist1 = distance(30,90,lat,lon)
dist1 =
60.0000

dist2 = distance(30,-90,lat,lon)
dist2 =
60.0000

What is this mystery point? The lat is 90ºN, and any lon will do. The North
Pole is the true geographic mean of these two points. Note that the great
circle containing both points runs through the North Pole (a great circle
represents the shortest path between two points on a sphere).

10-3

10 Mapping Applications

The Mapping Toolbox function meanm determines the geographic mean of any
number of points. It does this using three-dimensional vector addition of all
the points. For example, try the following:

lats = [30 30];
longs = [-90 90];
[latbar,longbar] = meanm(lats,longs)
latbar =
90

longbar =
0

This is the answer you now expect. This geographic mean can result in one
oddity; if the vectors all cancel each other, the mean is the center of the
planet. In this case, the returned mean point is (NaN,NaN) and a warning is
displayed. This phenomenon is highly improbable in real data, but can be
easily constructed. For example, it occurs when all the points are equally
spaced along a great circle. Try taking the geographic mean of (0º,0º), (0º,120º),
and (0º,240º), which trisect the equator.

elats = [0 0 0];
elons = [60 120 240];
meanm(elats, elons)
ans =

0 120.0000

Geographic Standard Deviation
As you might now expect, the Cartesian definition of standard deviation
provided in the standard MATLAB function std is also inappropriate for
geographic data that is unprojected or covers a significant portion of a planet.
Depending upon your purpose, you might want to use the separate geographic
deviations for latitude and longitude provided by the function stdm, or the
single standard distance provided in stdist. Both methods measure the
deviation of points from the mean position calculated by meanm.

The Meaning of stdm
The stdm function handles the latitude and longitude deviations separately.

[latstd,lonstd] = stdm(lat,lon)

10-4

Geographic Statistics

The function returns two deviations, one for latitudes and one for longitudes.

Latitude deviation is a straightforward standard deviation calculation from
the mean latitude (mean parallel) returned by meanm. This is a reasonable
measure for most cases, since on a sphere at least, a degree of latitude always
has the same arc length.

Longitude deviation is another matter. Simple calculations based on
sum-of-squares angular deviation from the mean longitude (mean meridian)
are misleading. The arc length represented by a degree of longitude at
extreme latitudes is significantly smaller than that at low latitudes.

The term departure is used to represent the arc length distance along a
parallel of a point from a given meridian. For example, assuming a spherical
planet, the departure of a degree of longitude at the Equator is a degree of
arc length, but the departure of a degree of longitude at a latitude of 60º is
one-half a degree of arc length. The stdm function calculates a sum-of-squares
departure deviation from the mean meridian.

If you want to plot the one-sigma lines for stdm, the latitude sigma lines are
parallels. However, the longitude sigma lines are not meridians; they are
lines of constant departure from the mean parallel.

;����	�
���
 �����
���
����
�������
��

;�����	�
���
 �����
���
����
������
�������

�
�����������

This handling of deviation has its problems. For example, its dependence upon
the logic of the coordinate system can cause it to break down near the poles.
For this reason, the standard distance provided by stdist is often a better

10-5

10 Mapping Applications

measure of deviation. The stdm handling is useful for many applications,
especially when the data is not global. For instance, these potential difficulties
would not be a danger for data points confined to the country of Mexico.

The Meaning of stdist
The standard distance of geographic data is a measure of the dispersion of the
data in terms of its distance from the geographic mean. Among its advantages
are its applicability anywhere on the globe and its single value:

dist = stdist(lat,lon)

In short, the standard distance is the average, norm, or cubic norm of the
distances of the data points in a great circle sense from the mean position.
It is probably a superior measure to the two deviations returned by stdm
except when a particularly latitude- or longitude-dependent feature is under
examination.

�
�����������

��������
������

10-6

Geographic Statistics

Equal-Areas in Geographic Statistics
A common error in applying two-dimensional statistics to geographic data
lies in ignoring equal-area treatment. It is often necessary to bin data to
statistically analyze it. In a Cartesian plane, this is easily done by dividing
the space into equal x-y squares. The geographic equivalent of this is to
bin up the data in equal latitude-longitude squares. Since such squares at
high latitudes cover smaller areas than their low-latitude counterparts,
the observations in these regions are underemphasized. The result can be
conclusions that are biased toward the equator.

Geographic Histograms
The geographic histogram function histr allows you to display binned-up
geographic observations. The histr function results in equirectangular
binning. Each bin has the same angular measurement in both latitude and
longitude, with a default measurement of 1 degree. The center latitudes and
longitudes of the bins are returned, as well as the number of observations
per bin:

[binlat,binlon,num] = histr(lats,lons)

As previously noted, these equirectangular bins result in counting bias toward
the equator. Here is a display of the one-degree-by-one-degree binning of
approximately 5,000 random data points in Russia. The relative size of the
circles indicates the number of observations per bin:

10-7

10 Mapping Applications

This is a portion of the whole map, displayed in an equal-area Bonne
projection. The first step in creating data displays without area bias is to
choose an equal-area projection. The proportionally sized symbols are a result
of the specialized display function scatterm.

You can eliminate the area bias by adding a fourth output argument to histr,
that will be used to weight each bin’s observation by that bin’s area:

[binlat,binlon,num,wnum] = histr(lats,lons)

The fourth output is the weighted observation count. Each bin’s observation
count is divided by its normalized area. Therefore, a high-latitude bin will
have a larger weighted number than a low-latitude bin with the same number
of actual observations. The same data and bins look much different when
they are area-weighted:

10-8

Geographic Statistics

Notice that there are larger symbols to the north in this display. The
previous display suggested that the data was relatively uniformly distributed.
When equal-area considerations are included, it is clear that the data is
skewed to the north. In fact, the data used is northerly skewed, but a simple
equirectangular handling failed to demonstrate this.

The histr function, therefore, does provide for the display of area-weighted
data. However, the actual bins used are of varying areas. Remember, the
one-degree-by-one-degree bin near a pole is much smaller than its counterpart
near the equator.

The hista function provides for actual equal-area bins.

Converting to an Equal-Area Coordinate System
The actual data itself can be converted to an equal-area coordinate system for
analysis with other statistical functions. It is easy to convert a collection of
geographic latitude-longitude points to an equal-area x-y Cartesian coordinate
system. The grn2eqa function applies the same transformation used in
calculating the Equal-Area Cylindrical projection:

[x,y] = grn2eqa(lat,lon)

10-9

10 Mapping Applications

For each geographic lat - lon pair, an equal-area x - y is returned. The
variables x and y can then be operated on under the equal-area assumption,
using a variety of two-dimensional statistical techniques. Tools for such
analysis can be found in the Statistics Toolbox™ software and elsewhere.
The results can then be converted back to geographic coordinates using the
eqa2grn function:

[lat,lon] = eqa2grn(x, y)

Remember, when converting back and forth between systems, latitude
corresponds to y and longitude corresponds to x.

10-10

Navigation

Navigation

In this section...

“What Is Navigation?” on page 10-11

“Conventions for Navigational Functions” on page 10-12

“Fixing Position” on page 10-13

“Planning the Shortest Path” on page 10-25

“Track Laydown – Displaying Navigational Tracks” on page 10-29

“Dead Reckoning” on page 10-31

“Drift Correction” on page 10-36

“Time Zones” on page 10-38

What Is Navigation?
Navigation is the process of planning, recording, and controlling the
movement of a craft or vehicle from one location to another. The word derives
from the Latin roots navis (“ship”) and agere (“to move or direct”). Geographic
information—usually in the form of latitudes and longitudes—is at the core of
navigation practice. The toolbox includes specialized functions for navigating
across expanses of the globe, for which projected coordinates are of limited use.

Navigating on land, over water, and through the air can involve a variety
of tasks:

• Establishing position, using known, fixed landmarks (piloting)

• Using the stars, sun, and moon (celestial navigation)

• Using technology to fix positions (inertial guidance, radio beacons, and
satellite navigation, including GPS)

• Deducing net movement from a past known position (dead reckoning)

Another navigational task involves planning a voyage or flight, which includes
determining an efficient route (usually by great circle approximation),
weather avoidance (optimal track routing), and setting out a plan of intended

10-11

10 Mapping Applications

movement (track laydown). Mapping Toolbox functions support these
navigational activities as well.

Conventions for Navigational Functions

Units
You can use and convert among several angular and distance measurement
units. The navigational support functions are

• dreckon

• gcwaypts

• legs

• navfix

To make these functions easy to use, and to conform to common navigational
practice, for these specific functions only, certain conventions are used:

• Angles are always in degrees.

• Distances are always in nautical miles.

• Speeds are always in knots (nautical miles per hour).

Related functions that do not carry this restriction include rhxrh, scxsc,
gcxgc, gcxsc, track, timezone, and crossfix, because of their potential
for application outside navigation.

Navigational Track Format
Navigational track format requires column-vector variables for the latitudes
and longitudes of track waypoints. A waypoint is a point through which
a track passes, usually corresponding to a course (or speed) change.
Navigational tracks are made up of the line segments connecting these
waypoints, which are called legs. In this format, therefore, n legs are
described using n+1 waypoints, because an endpoint for the final leg must
be defined. Mapping Toolbox navigation functions always presume angle
units are always given in degrees.

10-12

Navigation

��!������.

��!������2

��!������0 ��!������=

��!������8
��!������7

�
��.

�
��2

�
��0

�
��=

�
��8

Here, five track legs require six waypoints. In navigational track format, the
waypoints are represented by two 6-by-1 vectors, one for the latitudes and
one for the longitudes.

Fixing Position
The fundamental objective of navigation is to determine at a given moment
how to proceed to your destination, avoiding hazards on the way. The first step
in accomplishing this is to establish your current position. Early sailors kept
within sight of land to facilitate this. Today, navigation within sight (or radar
range) of land is called piloting. Positions are fixed by correlating the bearings
and/or ranges of landmarks. In real-life piloting, all sighting bearings are
treated as rhumb lines, while in fact they are actually great circles.

Over the distances involved with visual sightings (up to 20 or 30 nautical
miles), this assumption causes no measurable error and it provides the
significant advantage of allowing the navigator to plot all bearings as straight
lines on a Mercator projection.

The Mercator was designed exactly for this purpose. Range circles, which
might be determined with a radar, are assumed to plot as true circles on a
Mercator chart. This allows the navigator to manually draw the range arc
with a compass.

These assumptions also lead to computationally efficient methods for fixing
positions with a computer. The toolbox includes the navfix function, which
mimics the manual plotting and fixing process using these assumptions.

10-13

10 Mapping Applications

To obtain a good navigational fix, your relationship to at least three known
points is considered necessary. A questionable or poor fix can be obtained
with two known points.

Some Possible Situations
In this imaginary coastal region, you take a visual bearing on the radio tower
of 270º. At the same time, Gilligan’s Lighthouse bears 0º. If you plot a 90º-270º
line through the radio tower and a 0º-180º line through the lighthouse on your
Mercator chart, the point at which the lines cross is a fix. Since you have used
only two lines, however, its quality is questionable.

������"
�������	�

������#
����������

�������
�����	�

�������
�

But wait; your port lookout says he took a bearing on Cape Jones of 300º. If
that line exactly crosses the point of intersection of the first two lines, you
will have a perfect fix.

10-14

Navigation

������"
�������	�

������#
����������

�������
�����	�

�������
�

&��������'

. 2

0

Whoops. What happened? Is your lookout in error? Possibly, but perhaps one
or both of your bearings was slightly in error. This happens all the time.
Which point, 1, 2, or 3, is correct? As far as you know, they are all equally
valid.

In practice, the little triangle is plotted, and the fix position is taken as either
the center of the triangle or the vertex closest to a danger (like shoal water).
If the triangle is large, the quality is reported as poor, or even as no fix. If
a fourth line of bearing is available, it can be plotted to try to resolve the
ambiguity. When all three lines appear to cross at exactly the same point, the
quality is reported as excellent or perfect.

Notice that three lines resulted in three intersection points. Four lines would
return six intersection points. This is a case of combinatorial counting. Each
intersection corresponds to choosing two lines to intersect from among n lines.

The next time you traverse these straits, it is a very foggy morning. You
can’t see any landmarks, but luckily, your navigational radar is operating.
Each of these landmarks has a good radar signature, so you’re not worried.

10-15

10 Mapping Applications

You get a range from the radio tower of 14 nautical miles and a range from
the lighthouse of 15 nautical miles.

������"
�������	�

������#
����������

�������
�����	�

�������
�

.

2

Now what? You took ranges from only two objects, and yet you have two
possible positions. This ambiguity arises from the fact that circles can
intersect twice.

Luckily, your radar watch reports that he has Cape Jones at 18 nautical
miles. This should resolve everything.

10-16

Navigation

������"
�������	�

������#
����������

�������
�����	�

�������
�

���

You were lucky this time. The third range resolved the ambiguity and gave
you an excellent fix. Three intersections practically coincide. Sometimes
the ambiguity is resolved, but the fix is still poor because the three closest
intersections form a sort of circular triangle.

Sometimes the third range only adds to the confusion, either by bisecting the
original two choices, or by failing to intersect one or both of the other arcs at
all. In general, when n arcs are used, 2x(n-choose-2) possible intersections
result. In this example, it is easy to tell which ones are right.

Bearing lines and arcs can be combined. If instead of reporting a third range,
your radar watch had reported a bearing from the radar tower of 20º, the
ambiguity could also have been resolved. Note, however, that in practice,
lines of bearing for navigational fixing should only be taken visually, except
in desperation. A radar’s beam width can be a degree or more, leading to
uncertainty.

10-17

10 Mapping Applications

������"
�������	�

������#
����������

�������
�����	�

�������
�

���

As you begin to wonder whether this manual plotting process could be
automated, your first officer shows up on the bridge with a laptop and
Mapping Toolbox software.

Using navfix
The navfix function can be used to determine the points of intersection
among any number of lines and arcs. Be warned, however, that due to the
combinatorial nature of this process, the computation time grows rapidly with
the number of objects. To illustrate this function, assign positions to the
landmarks. Point A, Cape Jones, is at (latA,lonA). Point B, the radio tower, is
at (latB,lonB). Point C, Gilligan’s Lighthouse, is at (latC,lonC).

For the bearing-lines-only example, the syntax is:

[latfix,lonfix] = navfix([latA latB latC],[lonA lonB lonC],...
[300 270 0])

This defines the three points and their bearings as taken from the ship. The
outputs would look something like this, with actual numbers, of course:

10-18

Navigation

latfix =
latfix1 NaN % A intersecting B
latfix2 NaN % A intersecting C
latfix3 NaN % B intersecting C

lonfix =
lonfix1 NaN % A intersecting B
lonfix2 NaN % A intersecting C
lonfix3 NaN % B intersecting C

Notice that these are two-column matrices. The second column consists of
NaNs because it is used only for the two-intersection ambiguity associated
with arcs.

For the range-arcs-only example, the syntax is

[latfix,lonfix] = navfix([latA latB latC],[lonA lonB lonC],...
[16 14 15],[0 0 0])

This defines the three points and their ranges as taken from the ship. The
final argument indicates that the three cases are all ranges.

The outputs have the following form:

latfix =
latfix11 latfix12 % A intersecting B
latfix21 latfix22 % A intersecting C
latfix31 latfix32 % B intersecting C

lonfix =
lonfix11 lonfix12 % A intersecting B
lonfix21 lonfix22 % A intersecting C
lonfix31 lonfix32 % B intersecting C

Here, the second column is used, because each pair of arcs has two potential
intersections.

For the bearings and ranges example, the syntax requires the final input to
indicate which objects are lines of bearing (indicated with a 1) and which
are range arcs (indicated with a 0):

[latfix,lonfix] = navfix([latB latB latC],[lonB lonB lonC],...
[20 14 15],[1 0 0])

10-19

10 Mapping Applications

The resulting output is mixed:

latfix =
latfix11 NaN % Line B intersecting Arc B
latfix21 latfix22 % Line B intersecting Arc C
latfix31 latfix32 % Arc B intersecting Arc C

lonfix =
lonfix11 NaN % Line B intersecting Arc B
lonfix21 lonfix22 % Line B intersecting Arc C
lonfix31 lonfix32 % Arc B intersecting Arc C

Only one intersection is returned for the line from B with the arc about B,
since the line originates inside the circle and intersects it once. The same line
intersects the other circle twice, and hence it returns two points. The two
circles taken together also return two points.

Usually, you have an idea as to where you are before you take the fix. For
example, you might have a dead reckoning position for the time of the fix (see
below). If you provide navfix with this estimated position, it chooses from
each pair of ambiguous intersections the point closest to the estimate. Here’s
what it might look like:

[latfix,lonfix] = navfix([latB latB latC],[lonB lonB lonC],...
[20 14 15],[1 0 0],drlat,drlon)

latfix =
latfix11 % the only point
latfix21 % the closer point
latfix31 % the closer point

lonfix =
lonfix11 % the only point
lonfix21 % the closer point
lonfix31 % the closer point

A Numerical Example of Using navfix

1 Define some specific points in the middle of the Atlantic Ocean. These are
strictly arbitrary; perhaps they correspond to points in Atlantis:

lata = 3.1; lona = -56.2;
latb = 2.95; lonb = -55.9;

10-20

Navigation

latc = 3.15; lonc = -55.95;

2 Plot them on a Mercator projection:

axesm('MapProjection','mercator','Frame','on',...
'MapLatLimit',[2.8 3.3],'MapLonLimit',[-56.3 -55.8])

plotm([lata latb latc],[lona lonb lonc],...
'LineStyle','none','Marker','pentagram',...
'MarkerEdgeColor','b','MarkerFaceColor','b',...
'MarkerSize',12)

Here is what it looks like (with labeling and imaginary coastlines added
after the fact for illustration):

������"
&0,.<?5�87,2�<C'

�������
&0,.8<?5�88,98<C'

������#
&2,98<?5�88,9<C'

3 Take three visual bearings: Point A bears 289º, Point B bears 135º, and
Point C bears 026.5º. Calculate the intersections:

[newlat,newlong] = navfix([lata latb latc],[lona lonb lonc],...
[289 135 26.5],[1 1 1])

10-21

10 Mapping Applications

newlat =
3.0214 NaN
3.0340 NaN
3.0499 NaN

newlong =
-55.9715 NaN
-56.0079 NaN
-56.0000 NaN

4 Add the intersection points to the map:

plotm(newlat,newlong,'LineStyle','none',...
'Marker','diamond','MarkerEdgeColor','r',...
'MarkerFaceColor','r','MarkerSize',9)

������"

������#

�������

Bearing lines have been added to the map for illustration purposes. Notice
that each pair of objects results in only one intersection, since all are lines
of bearing.

10-22

Navigation

5 What if instead, you had ranges from the three points, A, B, and C, of
13 nmi, 9 nmi, and 7.5 nmi, respectively?

[newlat,newlong] = navfix([lata latb latc],[lona lonb lonc],...
[13 9 7.5],[0 0 0])

newlat =
3.0739 2.9434
3.2413 3.0329
3.0443 3.0880

newlong =
-55.9846 -56.0501
-56.0355 -55.9937
-56.0168 -55.8413

Here’s what these points look like:

������"

������#

�������

Three of these points look reasonable, three do not.

10-23

10 Mapping Applications

6 What if, instead of a range from Point A, you had a bearing to it of 284º?

[newlat,newlong] = navfix([lata latb latc],[lona lonb lonc],...
[284 9 7.5],[1 0 0])

newlat =
3.0526 2.9892
3.0592 3.0295
3.0443 3.0880

newlong =
-56.0096 -55.7550
-56.0360 -55.9168
-56.0168 -55.8413

������"

������#

�������

Again, visual inspection of the results indicates which three of the six
possible points seem like reasonable positions.

7 When using the dead reckoning position (3.05ºN,56.0ºW), the closer, more
reasonable candidate from each pair of intersecting objects is chosen:

10-24

Navigation

drlat = 3.05; drlon = -56;
[newlat,newlong] = navfix([lata latb latc],[lona lonb lonc],...

[284 9 7.5],[1 0 0],drlat,drlon)
newlat =
3.0526
3.0592
3.0443

newlong =
-56.0096
-56.0360
-56.0168

Planning the Shortest Path
You know that the shortest path between two geographic points is a great
circle. Sailors and aviators are interested in minimizing distance traveled,
and hence time elapsed. You also know that the rhumb line is a path of
constant heading, the natural means of traveling. In general, to follow a great
circle path, you would have to continuously alter course. This is impractical.
However, you can approximate a great circle path by rhumb line segments so
that the added distance is minor and the number of course changes minimal.

Surprisingly, very few rhumb line track legs are required to closely
approximate the distance of the great circle path.

Consider the voyage from Norfolk, Virginia (37ºN,76ºW), to Cape St. Vincent,
Portugal (37ºN,9ºW), one of the most heavily trafficked routes in the Atlantic.
A due-east rhumb line track is 3,213 nautical miles, while the optimal great
circle distance is 3,141 nautical miles.

Although the rhumb line path is only a little more than 2% longer, this is an
additional 72 miles over the course of the trip. For a 12-knot tanker, this
results in a 6-hour delay, and in shipping, time is money. If just three rhumb
line segments are used to approximate the great circle, the total distance of
the trip is 3,147 nautical miles. Our tanker would suffer only a half-hour
delay compared to a continuous rhumb line course. Here is the code for
computing the three types of tracks between Norfolk and St. Vincent:

figure('color','w');
ha = axesm('mapproj','mercator',...

'maplatlim',[25 55],'maplonlim',[-80 0]);

10-25

10 Mapping Applications

axis off, gridm on, framem on;
setm(ha,'MLineLocation',15,'PLineLocation',15);
mlabel on, plabel on;
load coast;
hg = geoshow(lat,long,'displaytype','line','color','b');

% Define point locs for Norfolk, VA and St. Vincent Portugal
norfolk = [37,-76];
stvincent = [37, -9];
geoshow(norfolk(1),norfolk(2),'DisplayType','point',...

'markeredgecolor','k','markerfacecolor','k','marker','o')
geoshow(stvincent(1),stvincent(2),'DisplayType','point',...

'markeredgecolor','k','markerfacecolor','k','marker','o')

% Compute and draw 100 points for great circle
gcpts = track2('gc',norfolk(1),norfolk(2),...

stvincent(1),stvincent(2));
geoshow(gcpts(:,1),gcpts(:,2),'DisplayType','line',...

'color','red','linestyle','--')

% Compute and draw 100 points for rhumb line
rhpts = track2('rh',norfolk(1),norfolk(2),...

stvincent(1),stvincent(2));
geoshow(rhpts(:,1),rhpts(:,2),'DisplayType','line',...

'color',[.7 .1 0],'linestyle','-.')
[latpts,lonpts] = gcwaypts(norfolk(1),norfolk(2),...

stvincent(1),stvincent(2),3); % Compute 3 waypoints
geoshow(latpts,lonpts,'DisplayType','line',...

'color',[.4 .2 0],'linestyle','-')

The resulting tracks and distances are shown below:

10-26

Navigation

:8<C 71<C =8<C 01<C .8<C

=8<?

01<?

$�
������
3�05.=.����&�������'

���
���	��
3�052.0���

0 �
���������������3�05.=9���

?�����> ��,�G��
��

The Mapping Toolbox function gcwaypts calculates waypoints in navigation
track format in order to approximate a great circle with rhumb line segments.
It uses this syntax:

[latpts,lonpts] = gcwaypts(lat1,lon1,lat2,lon2,numlegs)

All the inputs for this function are scalars a (starting and an ending position).
The numlegs input is the number of equal-length legs desired, which is
10 by default. The outputs are column vectors representing waypoints in
navigational track format ([heading distance]). The size of each of these
vectors is [(numlegs+1) 1]. Here are the points for this example:

[latpts,lonpts] = gcwaypts(norfolk(1),norfolk(2),...
stvincent(1),stvincent(2),3) % Compute 3 waypoints
latpts =

37.0000
41.5076
41.5076
37.0000

lonpts =
-76.0000
-54.1777

10-27

10 Mapping Applications

-30.8223
-9.0000

These points represent waypoints along the great circle between which the
approximating path follows rhumb lines. Four points are needed for three
legs, because the final point at Cape St. Vincent must be included.

Now we can compute the distance in nautical miles (nm) along each track
and via the waypoints:

drh = distance('rh',norfolk,stvincent); % Get rhumb line dist (deg)
dgc = distance('gc',norfolk,stvincent); % Get gt. circle dist (deg)
% Compute headings and distances for the waypoint legs
[course distnm] = legs(latpts,lonpts,'rh');

Finally, compare the distances:

distrhnm = deg2nm(drh) % Nautical mi along rhumb line
distgcnm = deg2nm(dgc) % Nautical mi along great circle
distlegsnm = sum(distnm) % Total dist along the 3 legs
rhgcdiff = distrhnm - distgcnm % Excess rhumb line distance
trgcdiff = distlegsnm - distgcnm % Excess distance along legs

distrhnm =
3.2127e+003

distgcnm =
3.1407e+003

distlegsnm =
3.1490e+003

rhgcdiff =
71.9980

trgcdiff =
8.3446

Following just three rhumb line legs reduces the distance travelled from 72
nm to 8.3 nm compared to a great circle course.

10-28

Navigation

Track Laydown – Displaying Navigational Tracks
Navigational tracks are most useful when graphically displayed.
Traditionally, the navigator identifies and plots waypoints on a Mercator
projection and then connects them with a straightedge, which on this
projection results in rhumb line tracks. In the previous example, waypoints
were chosen to approximate a great circle route, but they can be selected
for a variety of other reasons.

Let’s say that after arriving at Cape St. Vincent, your tanker must traverse
the Straits of Gibraltar and then travel on to Port Said, the northern terminus
of the Suez Canal. On the scale of the Mediterranean Sea, following great
circle paths is of little concern compared to ensuring that the many straits and
passages are safely transited. The navigator selects appropriate waypoints
and plots them.

To accomplish this with Mapping Toolbox functions, you can display a
map axes with a Mercator projection, select appropriate map latitude and
longitude limits to isolate the area of interest, plot coastline data, and
interactively mouse-select the waypoints with the inputm function. The track
function will generate points to connect these waypoints, which can then be
displayed with plotm.

For illustration, assume that the waypoints are known (or were gathered
using inputm). To learn about using inputm, see “Interacting with Displayed
Maps” on page 4-78, or inputm in the Mapping Toolbox reference pages.

waypoints = [36 -5; 36 -2; 38 5; 38 11; 35 13; 33 30; 31.5 32]
waypoints =
36.0000 -5.0000
36.0000 -2.0000
38.0000 5.0000
38.0000 11.0000
35.0000 13.0000
33.0000 30.0000
31.5000 32.0000

load coast
axesm('MapProjection','mercator',...
'MapLatLimit',[30 47],'MapLonLimit',[-10 37])
framem
plotm(lat,long)

10-29

10 Mapping Applications

[lttrk,lntrk] = track(waypoints);
plotm(lttrk,lntrk,'r')

Although these track segments are straight lines on the Mercator projection,
they are curves on others:

The segments of a track like this are called legs. Each of these legs can be
described in terms of course and distance. The function legs will take the
waypoints in navigational track format and return the course and distance
required for each leg. Remember, the order of the points in this format
determines the direction of travel. Courses are therefore calculated from each
waypoint to its successor, not the reverse.

[courses,distances] = legs(waypoints)
courses =
90.0000
70.3132
90.0000
151.8186
98.0776
131.5684

distances =
145.6231

10-30

Navigation

356.2117
283.6839
204.2073
854.0092
135.6415

Since this is a navigation function, the courses are all in degrees and the
distances are in nautical miles. From these distances, speeds required to
arrive at Port Said at a given time can be calculated. Southbound traffic is
allowed to enter the canal only once per day, so this information might be
economically significant, since unnecessarily high speeds can lead to high
fuel costs.

Dead Reckoning
When sailors first ventured out of sight of land, they faced a daunting
dilemma. How could they find their way home if they didn’t know where they
were? The practice of dead reckoning is an attempt to deal with this problem.
The term is derived from deduced reckoning.

Briefly, dead reckoning is vector addition plotted on a chart. For example, if
you have a fix at (30ºN,10ºW) at 0800, and you proceed due west for 1 hour
at 10 knots, and then you turn north and sail for 3 hours at 7 knots, you
should be at (30.35ºN,10.19ºW) at 1200.

10-31

10 Mapping Applications

However, a sailor shoots the sun at local apparent noon and discovers that the
ship’s latitude is actually 30.29ºN. What’s worse, he lives before the invention
of a reliable chronometer, and so he cannot calculate his longitude at all from
this sighting. What happened?

Leaving aside the difficulties in speed determination and the need to tack off
course, even modern craft have to contend with winds and currents. However,
despite these limitations, dead reckoning is still used for determining position
between fixes and for forecasting future positions. This is because dead
reckoning provides a certainty of assumptions that estimations of wind and
current drift cannot.

When navigators establish a fix from some source, be it from piloting, celestial,
or satellite observations, they plot a dead reckoning (DR) track, which is a
plot of the intended positions of the ship forward in time. In practice, dead
reckoning is usually plotted for 3 hours in advance, or for the time period
covered by the next three expected fixes. In open ocean conditions, hourly
fixes are sufficient; in coastal pilotage, three-minute fixes are common.

10-32

Navigation

Specific DR positions, which are sometimes called DRs, are plotted according
to the Rules of DR:

• DR at every course change

• DR at every speed change

• DR every hour on the hour

• DR every time a fix or running fix is obtained

• DR 3 hours ahead or for the next three expected fixes

• DR for every line of position (LOP), either visual or celestial

For example, the navigator plots these DRs:

Notice that the 1523 DR does not coincide with the LOP at 1523. Although
note is taken of this variance, one line is insufficient to calculate a new fix.

Mapping Toolbox function dreckon calculates the DR positions for a given set
of courses and speeds. The function provides DR positions for the first three
rules of dead reckoning. The approach is to provide a set of waypoints in
navigational track format corresponding to the plan of intended movement.

10-33

10 Mapping Applications

The time of the initial waypoint, or fix, is also needed, as well as the speeds to
be employed along each leg. Alternatively, a set of speeds and the times for
which each speed will apply can be provided. dreckon returns the positions
and times required of these DRs:

• dreckon calculates the times for position of each course change, which
will occur at the waypoints

• dreckon calculates the positions for each whole hour

• If times are provided for speed changes, dreckon calculates positions for
these times if they do not occur at course changes

Imagine you have a fix at midnight at the point (10ºN,0º):

waypoints(1,:) = [10 0]; fixtime = 0;

You intend to travel east and alter course at the point (10ºN,0.13ºE) and head
for the point (10.1ºN,0.18ºE). On the first leg, you will travel at 5 knots, and
on the second leg you will speed up to 7 knots.

waypoints(2,:) = [10 .13];
waypoints(3,:) = [10.1 .18];
speeds = [5;7];

To determine the DR points and times for this plan, use dreckon:

[drlat,drlon,drtime] = dreckon(waypoints,fixtime,speeds);
[drlat drlon drtime]
ans =
10.0000 0.0846 1.0000 % Position at 1 am
10.0000 0.1301 1.5373 % Time of course change
10.0484 0.1543 2.0000 % Position at 2 am
10.1001 0.1801 2.4934 % Time at final waypoint

Here is an illustration of this track and its DR points:

10-34

Navigation

However, you would like to get to the final point a little earlier to make a
rendezvous. You decide to recalculate your DRs based on speeding up to 7
knots a little earlier than planned. The first calculation tells you that you
were going to increase speed at the turn, which would occur at a time 1.5373
hours after midnight, or 1:32 a.m. (at time 0132 in navigational time format).
What time would you reach the rendezvous if you increased your speed to 7
knots at 1:15 a.m. (0115, or 1.25 hours after midnight)?

To indicate times for speed changes, another input is required, providing a
time interval after the fix time at which each ordered speed is to end. The
first speed, 5 knots, is to end 1.25 hours after midnight. Since you don’t know
when the rendezvous will be made under these circumstances, set the time
for the second speed, 7 knots, to end at infinity. No DRs will be returned
past the last waypoint.

spdtimes = [1.25; inf];
[drlat,drlon,drtime] = dreckon(waypoints,fixtime,...

speeds,spdtimes);
[drlat,drlon,drtime]
ans =
10.0000 0.0846 1.0000 % Position at 1 am
10.0000 0.1058 1.2500 % Position at speed change
10.0000 0.1301 1.4552 % Time of course change
10.0570 0.1586 2.0000 % Position at 2 am
10.1001 0.1801 2.4113 % Time at final waypoint

10-35

10 Mapping Applications

This following illustration shows the difference:

The times at planned positions after the speed change are a little earlier; the
position at the known time (2 a.m.) is a little farther along. With this plan,
you will arrive at the rendezvous about 4 1/2 minutes earlier, so you may
want to consider a greater speed change.

Drift Correction
Dead reckoning is a reasonably accurate method for predicting position if the
vehicle is able to maintain the planned course. Aircraft and ships can be
pushed off the planned course by winds and current. An important step in
navigational planning is to calculate the required drift correction.

In the standard drift correction problem, the desired course and wind are
known, but the heading needed to stay on course is unknown. This problem
is well suited to vector analysis. The wind velocity is a vector of known
magnitude and direction. The vehicle’s speed relative to the moving air mass
is a vector of known magnitude, but unknown direction. This heading must be
chosen so that the sum of the vehicle and wind velocities gives a resultant in
the specified course direction. The ground speed can be larger or smaller than
the air speed because of headwind or tailwind components. A navigator would

10-36

Navigation

like to know the required heading, the associated wind correction angle, and
the resulting ground speed.

��	��
 D
�����

$��	��
��

� ��

�

�����

�������������	
�	���

What heading puts an aircraft on a course of 250° when the wind is 38 knots
from 285°? The aircraft flies at an airspeed of 145 knots.

course = 250; airspeed = 145; windfrom = 285; windspeed = 38;
[heading,groundspeed,windcorrangle] = ...
driftcorr(course,airspeed,windfrom,windspeed)

heading =
258.65

groundspeed =
112.22

windcorrangle =
8.65

The required heading is about 9° to the right of the course. There is a 33-knot
headwind component.

10-37

10 Mapping Applications

A related problem is the calculation of the wind speed and direction from
observed heading and course. The wind velocity is just the vector difference of
the ground speed and the velocity relative to the air mass.

[windfrom,windspeed] = ...
driftvel(course,groundspeed,heading,airspeed)

windfrom =
285.00

windspeed =
38.00

Time Zones
Time zones used for navigation are uniform 15º extents of longitude. The
timezone function returns a navigational time zone, that is, one based solely
on longitude with no regard for statutory divisions. So, for example, Chicago,
Illinois, lies in the statutory U.S. Central time zone, which has irregular
boundaries devised for political or convenience reasons. However, from a
navigational standpoint, Chicago’s longitude places it in the S (Sierra) time
zone. The zone’s description is +6, which indicates that 6 hours must be added
to local time to get Greenwich, or Z (Zulu) time. So, if it is noon, standard
time in Chicago, it is 12+6, or 6 p.m., at Greenwich.

Each 15º navigational time zone has a distinct description and designating
letter. The exceptions to this are the two zones on either side of the date line,
M and Y (Mike and Yankee). These zones are only 7-1/2º wide, since on one
side of the date line, the description is +12, and on the other, it is -12.

Navigational time zones are very important for celestial navigation
calculations. Although there are no Mapping Toolbox functions designed
specifically for celestial navigation, a simple example can be devised.

10-38

Navigation

ZZZZZZ A B C D EF G H I K L NOPQRSTUVWX

+11+10 +9 +8 +7 +6 +5 +4 +3 +2 +1-11-10-9-8-7-6 -5-4-3-2-10

YM

+12
-12/

It is possible with a sextant to determine local apparent noon. This is the
moment when the Sun is at its zenith from your point of view. At the exact
center longitude of a time zone, the phenomenon occurs exactly at noon, local
time. Since the Sun traverses a 15º time zone in 1 hour, it crosses one degree
every 4 minutes. So if you observe local apparent noon at 11:54, you must
be 1.5º east of your center longitude.

You must know what time zone you are in before you can even attempt a fix.
This concept has been understood since the spherical nature of the Earth was
first accepted, but early sailors had no ability to keep accurate time on ship,
and so were unable to determine their longitude. The invention of accurate
chronometers in the 18th century solved this problem.

The timezone function is quite simple. It returns the description, zd, an
integer for use in calculations, a string, zltr, of the zone designator, and a
string fully naming the zone. For example, the information for a longitude
123ºE is the following:

[zd,zltr,zone] = timezone(123)
zd =

10-39

10 Mapping Applications

-8
zltr =
H
zone =
-8 H

Returning to the simple celestial navigation example, the center longitude of
this zone is:

-(zd*15)
ans =
120

This means that at our longitude, 123ºE, we should experience local apparent
noon at 11:48 a.m., 12 minutes early.

10-40

11

Map Projections Reference

Cylindrical Projections (p. 11-2) Map projections developed on a
cylinder

Pseudocylindrical Projections
(p. 11-2)

Variants of map projections
developed on cylinders

Conic Projections (p. 11-4) Map projections developed on a cone

Polyconic and Pseudoconic
Projections (p. 11-4)

Map projections developed on a
family of cones (polyconic) and conic
variants

Azimuthal, Pseudoazimuthal, and
Modified Azimuthal Projections
(p. 11-4)

Map projections that preserve
azimuths from a central point and
their variants

UTM and UPS Systems (p. 11-5) Constructing Universal Transverse
Mercator and Universal Polar
Stereographic maps

3-D Globe Display (p. 11-5) Visualizing maps on a sphere

See Chapter 8, “Using Map Projections and Coordinate Systems” for a general
discussion of map projections, and “Summary and Guide to Projections” on
page 8-63 for a tabular comparison of their properties.

11 Map Projections Reference

Cylindrical Projections
balthsrt Balthasart Projection

behrmann Behrmann Projection

bsam Bolshoi Sovietskii Atlas Mira Projection

braun Braun Perspective Projection

cassini Cassini Projection

cassinistd Cassini Projection — Standard

ccylin Central Cylindrical Projection

eqacylin Equal Area Projection

edqcylin Equidistant Projection

giso Gall Isographic Projection

gortho Gall Orthographic Projection

gstereo Gall Stereographic Projection

lambcyln Lambert Projection

mercator Mercator Projection

miller Miller Projection

pcarree Plate Carree Projection

tranmerc Transverse Mercator Projection

trystan Trystan Edwards Projection

wetch Wetch Projection

Pseudocylindrical Projections
apianus Apianus II Projection

collig Collignon Projection

craster Craster Parabolic Projection

11-2

Pseudocylindrical Projections

eckert1 Eckert I Projection

eckert2 Eckert II Projection

eckert3 Eckert III Projection

eckert4 Eckert IV Projection

eckert5 Eckert V Projection

eckert6 EckertVI Projection

flatplrp Flat-Polar Parabolic Projection

flatplrq Flat-Polar Quartic Projection

flatplrs Flat-Polar Sinusoidal Projection

fournier Fournier Projection

goode Goode Homolosine Projection

hatano Hatano Assymmetrical Equal Area Projection

kavrsky5 Kavraisky V Projection

kavrsky6 Kavraisky VI Projection

loximuth Loximuthal Projection

modsine Modified Sinusoidal Projection

mollweid Mollweide Projection

putnins5 Putnins P5 Projection

quartic Quartic Authalic Projection

robinson Robinson Projection

sinusoid Sinusoidal Projection

wagner4 Wsgner IV Projection

winkel Winkel I Projection

11-3

11 Map Projections Reference

Conic Projections
eqaconic Albers Equal Area Conic Projection

eqaconicstd Albers Equal Conic Projection — Standard

eqdconic Equidistant Conic Projection

eqdconicstd Equidistant Conic Projection — Standard

lambert Lambert Conformal Conic Projection

lambertstd Lambert Conformal Conic Projection — Standard

murdoch1 Murdoch I Conic Projection

murdoch3 Murdoch III Minimum Error Conic Projection

Polyconic and Pseudoconic Projections
bonne Bonne Projection

polycon Polyconic Projection

polyconstd Polyconic Projection — Standard

vgrint1 Van Der Grinten I Projection

werner Werner Projection

Azimuthal, Pseudoazimuthal, and Modified Azimuthal
Projections

aitoff Aitoff Projection

breusing Breusing Harmonic Mean Projection

bries Briesemeister Projection

eqaazim Lambert Equal Area Azimuthal Projection

11-4

UTM and UPS Systems

eqdazim Equidistant Azimuthal Projection

gnomonic Gnomonic Azimuthal Projection

hammer Hammer Projection

ortho Orthographic Azimuthal Projection

stereo Stereographic Azimuthal Projection

vperspec Vertical Perspective Azimuthal Projection

wiechel Wiechel Equal Area Projection

UTM and UPS Systems
ups Universal Polar Stereographic (UPS) system

utm Universal Transverse Mercator (UTM) system

3-D Globe Display
globe Earth as sphere in 3–D graphics

11-5

11 Map Projections Reference

11-6

12

Map Projections —
Alphabetical List

Aitoff Projection

Classification Modified Azimuthal

Syntax aitoff

Graticule Meridians: Central meridian is a straight line half the length of the
Equator. Other meridians are complex curves, equally spaced along the
Equator, and concave toward the central meridian.

Parallels: Equator is straight. Other parallels are complex curves,
equally spaced along the central meridian, and concave toward the
nearest pole.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features This projection is neither conformal nor equal area. The only point
free of distortion is the center point. Distortion of shape and area are
moderate throughout. This projection has less angular distortion on the
outer meridians near the poles than pseudoazimuthal projections

Parallels There is no standard parallel for this projection.

Remarks This projection was created by David Aitoff in 1889. It is a modification
of the Equidistant Azimuthal projection. The Aitoff projection inspired
the similar Hammer projection, which is equal area.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('aitoff', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-2

Aitoff Projection

12-3

Albers Equal-Area Conic Projection

Classification Conic

Syntax eqaconic
eqaconic

Graticule Meridians: Equally spaced straight lines converging to a common point,
usually beyond the pole. The angles between the meridians are less
than the true angles.

Parallels: Unequally spaced concentric circular arcs centered on the
point of convergence. Spacing of parallels decreases away from the
central latitudes.

Poles: Normally circular arcs, enclosing the same angle as the displayed
parallels.

Symmetry: About any meridian.

Features This is an equal-area projection. Scale is true along the one or two
selected standard parallels. Scale is constant along any parallel; the
scale factor of a meridian at any given point is the reciprocal of that
along the parallel to preserve equal-area. This projection is free of
distortion along the standard parallels. Distortion is constant along any
other parallel. This projection is neither conformal nor equidistant.

Parallels The cone of projection has interesting limiting forms. If a pole is
selected as a single standard parallel, the cone is a plane and a Lambert
Azimuthal Equal-Area projection results. If two parallels are chosen,
not symmetric about the Equator, then a Lambert Equal-Area Conic
projection results. If a pole is selected as one of the standard parallels,
then the projected pole is a point, otherwise the projected pole is an arc.
If the Equator is chosen as a single parallel, the cone becomes a cylinder
and a Lambert Equal-Area Cylindrical projection is the result. Finally,
if two parallels equidistant from the Equator are chosen as the standard
parallels, a Behrmann or other equal-area cylindrical projection is the
result. Suggested parallels for maps of the conterminous U.S. are [29.5
45.5]. The default parallels are [15 75].

12-4

Albers Equal-Area Conic Projection

Remarks This projection was presented by Heinrich Christian Albers in 1805.

Limitations Longitude data greater than 135º east or west of the central meridian
is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqaconic', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also eqaconicstd

12-5

Albers Equal-Area Conic Projection — Standard

Classification Conic

Syntax eqaconicstd

Graticule Meridians: Equally spaced straight lines converging to a common point,
usually beyond the pole. The angles between the meridians are less
than the true angles.

Parallels: Unequally spaced concentric circular arcs centered on the
point of convergence. Spacing of parallels decreases away from the
central latitudes.

Poles: Normally circular arcs, enclosing the same angle as the displayed
parallels.

Symmetry: About any meridian.

Features This function implements the Albers Equal Area Conic projection
directly on a reference ellipsoid, consistent with the industry-standard
definition of this projection. See eqaconic for an alternative
implementation based on rotating the authalic sphere.

This is an equal area projection. Scale is true along the one or two
selected standard parallels. Scale is constant along any parallel; the
scale factor of a meridian at any given point is the reciprocal of that
along the parallel to preserve equal area. The projection is free of
distortion along the standard parallels. Distortion is constant along any
other parallel. This projection is neither conformal nor equidistant.

Parallels The cone of projection has interesting limiting forms. If a pole is
selected as a single standard parallel, the cone is a plane and a Lambert
Azimuthal Equal-Area projection results. If two parallels are chosen,
not symmetric about the Equator, then a Lambert Equal-Area Conic
projection results. If a pole is selected as one of the standard parallels,
then the projected pole is a point, otherwise the projected pole is an arc.
If the Equator is chosen as a single parallel, the cone becomes a cylinder
and a Lambert Equal-Area Cylindrical projection is the result. Finally,
if two parallels equidistant from the Equator are chosen as the standard

12-6

Albers Equal-Area Conic Projection — Standard

parallels, a Behrmann or other equal-area cylindrical projection is the
result. Suggested parallels for maps of the conterminous U.S. are [29.5
45.5]. The default parallels are [15 75].

Remarks This projection was presented by Heinrich Christian Albers in 1805
and it is also known as a Conical Orthomorphic projection. The cone of
projection has interesting limiting forms. If a pole is selected as a single
standard parallel, the cone is a plane, and a Lambert Equal Area Conic
projection is the result. If the Equator is chosen as a single parallel,
the cone becomes a cylinder and a Lambert Cylindrical Equal Area
Projection is the result. Finally, if two parallels equidistant from the
Equator are chosen as the standard parallels, a Behrmann or other
cylindrical equal area projection is the result.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqaconicstd', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See also eqaconic

12-7

Apianus II Projection

Classification Pseudocylindrical

Syntax apianus

Graticule Meridians: Equally spaced elliptical curves converging at the poles.

Parallels: Equally spaced straight lines.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features Scale is constant along any parallel or pair of parallels equidistant from
the Equator, as well as along the central meridian. The Equator is free
of angular distortion. This projection is not equal-area, equidistant, or
conformal.

Parallels There is no standard parallel for this projection.

Remarks This projection was first described in 1524 by Peter Apian (or
Bienewitz).

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('apianus', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-8

Apianus II Projection

12-9

Balthasart Cylindrical Projection

Classification Cylindrical

Syntax balthsrt

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an orthographic projection onto a cylinder secant at the 50º
parallels. It is equal-area, but distortion of shape increases with
distance from the standard parallels. Scale is true along the standard
parallels and constant between two parallels equidistant from the
Equator. This projection is not equidistant.

Parallels For cylindrical projections, only one standard parallel is specified. The
other standard parallel is the same latitude with the opposite sign. For
this projection, the standard parallel is by definition fixed at 50º.

Remarks The Balthasart Cylindrical projection was presented in 1935 and is a
special form of the Equal-Area Cylindrical projection secant at 50ºN
and S.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('balthsrt', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-10

Balthasart Cylindrical Projection

12-11

Behrmann Cylindrical Projection

Classification Cylindrical

Syntax behrmann

Graticule Meridians: Equally spaced straight parallel lines 0.42 as long as the
Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an orthographic projection onto a cylinder secant at the 30º
parallels. It is equal-area, but distortion of shape increases with
distance from the standard parallels. Scale is true along the standard
parallels and constant between two parallels equidistant from the
Equator. This projection is not equidistant.

Parallels For cylindrical projections, only one standard parallel is specified. The
other standard parallel is the same latitude with the opposite sign. For
this projection, the standard parallel is by definition fixed at 30º.

Remarks This projection is named for Walter Behrmann, who presented it in
1910 and is a special form of the Equal-Area Cylindrical projection
secant at 30ºN and S.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('behrmann', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-12

Behrmann Cylindrical Projection

12-13

Bolshoi Sovietskii Atlas Mira Projection

Classification Cylindrical

Syntax bsam

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing increases toward the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is a perspective projection from a point on the Equator opposite
a given meridian onto a cylinder secant at the 30º parallels. It is not
equal-area, equidistant, or conformal. Scale is true along the standard
parallels and constant between two parallels equidistant from the
Equator. There is no distortion along the standard parallels, but it
increases moderately away from these parallels, becoming severe at
the poles.

Parallels For cylindrical projections, only one standard parallel is specified. The
other standard parallel is the same latitude with the opposite sign. For
this projection, the standard parallel is by definition fixed at 30º.

Remarks This projection was first described in 1937, when it was used for maps
in the Bolshoi Sovietskii Atlas Mira (Great Soviet World Atlas). It is
commonly abbreviated as the BSAM projection. It is a special form of
the Braun Perspective Cylindrical projection secant at 30ºN and S.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('bsam', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-14

Bolshoi Sovietskii Atlas Mira Projection

12-15

Bonne Projection

Classification Pseudoconic

Syntax bonne

Graticule Central Meridian: A straight line.

Meridians: Complex curves connecting points equally spaced along each
parallel and concave toward the central meridian.

Parallels: Concentric circular arcs spaced at true distances along the
central meridian.

Poles: Points.

Symmetry: About the central meridian.

Features This is an equal-area projection. The curvature of the standard parallel
is identical to that on a cone tangent at that latitude. The central
meridian and the central parallel are free of distortion. This projection
is not conformal.

Parallels This projection has one standard parallel, which is 30ºN by default.
It has two interesting limiting forms. If a pole is employed as the
standard parallel, a Werner projection results; if the Equator is used, a
Sinusoidal projection results.

Remarks This projection dates in a rudimentary form back to Claudius Ptolemy
(about A.D. 100). It was further developed by Bernardus Sylvanus in
1511. It derives its name from its considerable use by Rigobert Bonne,
especially in 1752.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('bonne', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-16

Bonne Projection

12-17

Braun Perspective Cylindrical Projection

Classification Cylindrical

Syntax braun

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing increases toward the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an perspective projection from a point on the Equator opposite a
given meridian onto a cylinder secant at standard parallels. It is not
equal-area, equidistant, or conformal. Scale is true along the standard
parallels and constant between two parallels equidistant from the
Equator. There is no distortion along the standard parallels, but it
increases moderately away from these parallels, becoming severe at
the poles.

Parallels For cylindrical projections, only one standard parallel is specified. The
other standard parallel is the same latitude with the opposite sign. For
this projection, any latitude may be chosen; the default is arbitrarily
set to 0º.

Remarks This projection was first described by Braun in 1867. It is less well
known than the specific forms of it called the Gall Stereographic and
the Bolshoi Sovietskii Atlas Mira projections.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('braun', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-18

Braun Perspective Cylindrical Projection

12-19

Breusing Harmonic Mean Projection

Classification Azimuthal

Syntax breusing

Graticule The graticule described is for the polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole.

Parallels: Unequally spaced circles centered on the central pole. The
opposite hemisphere cannot be shown. Spacing increases (slightly)
away from the central pole.

Poles: The central pole is a point, while the opposite pole cannot be
shown.

Symmetry: About any meridian.

Features This is a harmonic mean between a Stereographic and Lambert
Equal-Area Azimuthal projection. It is not equal-area, equidistant,
or conformal. There is no point at which scale is accurate in all
directions. The primary feature of this projection is that it is minimum
error—distortion is moderate throughout.

Parallels There are no standard parallels for azimuthal projections.

Remarks F. A. Arthur Breusing developed a geometric mean version of this
projection in 1892. A. E. Young modified this to the harmonic
mean version presented here in 1920. This projection is virtually
indistinguishable from the Airy Minimum Error Azimuthal projection,
presented by George Airy in 1861.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('breusing', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-20

Breusing Harmonic Mean Projection

12-21

Briesemeister Projection

Classification Modified Azimuthal

Syntax bries

Graticule Meridians: Central meridian is straight. Other meridians are complex
curves.

Parallels: Complex curves.

Poles: Points.

Symmetry: About the central meridian.

Features This equal-area projection groups the continents about the center of
the projection. The only point free of distortion is the center point.
Distortion of shape and area are moderate throughout.

Parallels There is no standard parallel for this projection.

Remarks This projection was presented by William Briesemeister in 1953. It is
an oblique Hammer projection with an axis ratio of 1.75 to 1, instead
of 2 to 1.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('bries', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-22

Briesemeister Projection

12-23

Cassini Cylindrical Projection

Classification Cylindrical

Syntax cassini

Graticule Central Meridian: Straight line (includes meridian opposite the central
meridian in one continuous line).

Other Meridians: Straight lines if 90º from central meridian, complex
curves concave toward the central meridian otherwise.

Parallels: Complex curves concave toward the nearest pole.

Poles: Points along the central meridian.

Symmetry: About any straight meridian or the Equator.

Features This is a projection onto a cylinder tangent at the central meridian.
Distortion of both shape and area are functions of distance from the
central meridian. Scale is true along the central meridian and along
any straight line perpendicular to the central meridian (i.e., it is
equidistant).

Parallels For cylindrical projections, only one standard parallel is specified. The
other standard parallel is the same latitude with the opposite sign.
For this projection, the standard parallel of the base projection is by
definition fixed at 0º.

Remarks This projection is the transverse aspect of the Plate Carrée projection,
developed by César François Cassini de Thury (1714–1784). It is still
used for the topographic mapping of a few countries.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('cassini', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-24

Cassini Cylindrical Projection

See also cassinistd

12-25

Cassini Cylindrical Projection — Standard

Syntax cassinistd

Graticule Central Meridian: Straight line (includes meridian opposite the central
meridian in one continuous line).

Other Meridians: Straight lines if 90º from central meridian, complex
curves concave toward the central meridian otherwise.

Parallels: Complex curves concave toward the nearest pole.

Poles: Points along the central meridian.

Symmetry: About any straight meridian or the Equator.

Features This is a projection onto a cylinder tangent at the central meridian.
Distortion of both shape and area are functions of distance from the
central meridian. Scale is true along the central meridian and along
any straight line perpendicular to the central meridian (i.e., it is
equidistant).

Parallels For cylindrical projections, only one standard parallel is specified. The
other standard parallel is the same latitude with the opposite sign.
For this projection, the standard parallel of the base projection is by
definition fixed at 0º.

Remarks This projection is the transverse aspect of the Plate Carrée projection,
developed by César François Cassini de Thury (1714–1784). It is still
used for the topographic mapping of a few countries.

cassinistd implements the Cassini projection directly on a sphere
or reference ellipsoid, as opposed to using the equidistant cylindrical
projection in tranverse mode as in function cassini. Distinct forms
are used for the sphere and ellipsoid, because approximations in the
ellipsoidal formulation cause it to be appropriate only within a zone
that extends 3 or 4 degrees in longitude on either side of the central
meridian.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('cassinistd', 'Frame', 'on', 'Grid', 'on');

12-26

Cassini Cylindrical Projection — Standard

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See also cassini

12-27

Central Cylindrical Projection

Classification Cylindrical

Syntax ccylin

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to
the meridians. Spacing increases toward the poles, more rapidly than
that of the Mercator projection.

Poles: Cannot be shown.

Symmetry: About any meridian or the Equator.

Features This is a perspective projection from the center of the Earth onto a
cylinder tangent at the Equator. It is not equal-area, equidistant, or
conformal. Scale is true along the Equator and constant between two
parallels equidistant from the Equator. Scale becomes infinite at the
poles. There is no distortion along the Equator, but it increases rapidly
away from the Equator.

Parallels For cylindrical projections, only one standard parallel is specified. The
other standard parallel is the same latitude with the opposite sign. For
this projection, the standard parallel is by definition fixed at 0º.

Remarks The origin of this projection is unknown; it has little use beyond the
educational aspects of its method of projection and as a comparison to
the Mercator projection, which is not perspective. The transverse aspect
of the Central Cylindrical is called the Wetch projection.

Limitations This projection is available only on the sphere. Data at latitudes
greater than 75º is trimmed to prevent large values from dominating
the display.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('ccylin', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);

12-28

Central Cylindrical Projection

tissot;

12-29

Collignon Projection

Classification Pseudocylindrical

Syntax collig

Graticule Meridians: Equally spaced straight lines converging at the North Pole.

Parallels: Unequally spaced straight parallel lines, farthest apart near
the North Pole, closest near the South Pole

Poles: North Pole is a point, South Pole is a line 1.41 as long as the
Equator.

Symmetry: About the central meridian.

Features This is a novelty projection showing a straight-line, equal-area
graticule. Scale is true along the 15º51’N parallel, constant along any
parallel, and different for any pair of parallels. Distortion is severe in
many regions, and is only absent at 15º51’N on the central meridian.
This projection is not conformal or equidistant.

Parallels This projection has one standard parallel, which is by definition fixed
at 15º51’.

Remarks This projection was presented by Édouard Collignon in 1865.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('collig', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-30

Craster Parabolic Projection

Classification Pseudocylindrical

Syntax craster

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced parabolas intersecting at the poles
and concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to
the central meridian. Spacing changes very gradually and is greatest
near the Equator.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 36º46’ parallels
and is constant along any parallel and between any pair of parallels
equidistant from the Equator. Distortion is severe near the outer
meridians at high latitudes, but less so than the Sinusoidal projection.
This projection is free of distortion only at the two points where the
central meridian intersects the 36º46’ parallels. This projection is not
conformal or equidistant.

Parallels For this projection, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. The
standard parallel is by definition fixed at 36º46’.

Remarks This projection was developed by John Evelyn Edmund Craster in 1929;
it was further developed by Charles H. Deetz and O.S. Adams in 1934.
It was presented independently in 1934 by Putnins as his P4 projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('craster', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-31

Craster Parabolic Projection

12-32

Eckert I Projection

Classification Pseudocylindrical

Syntax eckert1

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced straight converging lines broken at
the Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to the
central meridian.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features Scale is true along the 47º10’ parallels and is constant along any
parallel, between any pair of parallels equidistant from the Equator,
and along any given meridian. It is not free of distortion at any
point, and the break at the Equator introduces excessive distortion
there; regardless of the appearance here, the Tissot indicatrices are of
indeterminate shape along the Equator. This novelty projection is not
equal-area or conformal.

Parallels For this projection, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. The
standard parallel is by definition fixed at 47º10’.

Remarks This projection was presented by Max Eckert in 1906.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert1', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-33

Eckert I Projection

12-34

Eckert ll Projection

Classification Pseudocylindrical

Syntax eckert2

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced straight converging lines broken at
the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
central meridian. Spacing is widest near the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 55º10’ parallels
and is constant along any parallel and between any pair of parallels
equidistant from the Equator. It is not free of distortion at any point
except at 55º10’N and S along the central meridian; the break at
the Equator introduces excessive distortion there. Regardless of
the appearance here, the Tissot indicatrices are of indeterminate
shape along the Equator. This novelty projection is not conformal or
equidistant.

Parallels For this projection, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. The
standard parallel is by definition fixed at 55º10’.

Remarks This projection was presented by Max Eckert in 1906.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert2', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-35

Eckert ll Projection

12-36

Eckert lll Projection

Classification Pseudocylindrical

Syntax eckert3

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced semiellipses concave toward the
central meridian. The outer meridians, 180º east and west of the central
meridian, are semicircles.

Parallels: Equally spaced straight parallel lines, perpendicular to the
central meridian.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features Scale is true along the 35º58’ parallels and is constant along any parallel
and between any pair of parallels equidistant from the Equator. No
point is free of all scale distortion, but the Equator is free of angular
distortion. This projection is not equal-area, conformal, or equidistant.

Parallels For this projection, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. The
standard parallel is by definition fixed at 35º58’.

Remarks This projection was presented by Max Eckert in 1906.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert3', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-37

Eckert lll Projection

12-38

Eckert IV Projection

Classification Pseudocylindrical

Syntax eckert4

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced semiellipses concave toward the
central meridian. The outer meridians, 180º east and west of the central
meridian, are semicircles.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
central meridian. Spacing is greatest toward the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 40º30’ parallels
and is constant along any parallel and between any pair of parallels
equidistant from the Equator. It is free of distortion only at the two
points where the 40º30’ parallels intersect the central meridian. This
projection is not conformal or equidistant.

Parallels For this projection, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. The
standard parallel is by definition fixed at 40º30’.

Remarks This projection was presented by Max Eckert in 1906.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert4', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-39

Eckert IV Projection

12-40

Eckert V Projection

Classification Pseudocylindrical

Syntax eckert5
eckert5

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves concave toward
the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the
central meridian.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This projection is an arithmetic average of the x and y coordinates of the
Sinusoidal and Plate Carrée projections. Scale is true along latitudes
37º55’N and S, and is constant along any parallel and between any pair
of parallels equidistant from the Equator. There is no point free of all
distortion, but the Equator is free of angular distortion. This projection
is not equal-area, conformal, or equidistant.

Parallels This projection has one standard parallel, which is by definition fixed
at 0º.

Remarks This projection was presented by Max Eckert in 1906.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert5', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-41

Eckert V Projection

12-42

Eckert VI Projection

Classification Pseudocylindrical

Syntax eckert6

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves concave toward
the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
central meridian. Spacing is greatest toward the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 49º16’ parallels
and is constant along any parallel and between any pair of parallels
equidistant from the Equator. It is free of distortion only at the two
points where the 49º16’ parallels intersect the central meridian. This
projection is not conformal or equidistant.

Parallels For this projection, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. The
standard parallel is by definition fixed at 49º16’.

Remarks This projection was presented by Max Eckert in 1906.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert6', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-43

Eckert VI Projection

12-44

Equal-Area Cylindrical Projection

Classification Cylindrical

Syntax eqacylin

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an orthographic projection onto a cylinder secant at the standard
parallels. It is equal-area, but distortion of shape increases with
distance from the standard parallels. Scale is true along the standard
parallels and constant between two parallels equidistant from the
Equator. This projection is not equidistant.

Parallels For cylindrical projections, only one standard parallel is specified. The
other standard parallel is the same latitude with the opposite sign. For
this projection, any latitude may be chosen; the default is arbitrarily
set to 0º (the Lambert variation).

Remarks This projection was proposed by Johann Heinrich Lambert (1772),
a prolific cartographer who proposed seven different important
projections. The form of this projection tangent at the Equator is
often called the Lambert Equal-Area Cylindrical projection. That and
other special forms of this projection are included separately in this
guide, including the Gall Orthographic, the Behrmann Cylindrical,
the Balthasart Cylindrical, and the Trystan Edwards Cylindrical
projections.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqacylin', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-45

Equal-Area Cylindrical Projection

12-46

Equidistant Azimuthal Projection

Classification Azimuthal

Syntax eqdazim

Graticule The graticule described is for the polar aspect.

Meridians: Equally spaced straight lines intersecting at a central pole.
The angles between them are the true angles.

Parallels: Equally spaced circles, centered on the central pole. The
entire Earth may be shown.

Poles: Central pole is a point. The opposite pole is a bounding circle
with a radius twice that of the Equator.

Symmetry: About any meridian.

Features This is an equidistant projection. It is neither equal-area nor conformal.
In the polar aspect, scale is true along any meridian. The projection is
distortion free only at the center point. Distortion is moderate for the
inner hemisphere, but it becomes extreme in the outer hemisphere.

Parallels There are no standard parallels for azimuthal projections.

Remarks This projection may have been first used by the ancient Egyptians for
star charts. Several cartographers used it during the sixteenth century,
including Guillaume Postel, who used it in 1581. Other names for this
projection include Postel and Zenithal Equidistant.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqdazim', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-47

Equidistant Azimuthal Projection

12-48

Equidistant Conic Projection

Classification Conic

Syntax eqdconic

Graticule Meridians: Equally spaced straight lines converging to a common point,
usually beyond the pole. The angles between the meridians are less
than the true angles.

Parallels: Equally spaced concentric circular arcs centered on the point
of meridanal convergence.

Poles: Normally circular arcs, enclosing the same angle as the displayed
parallels.

Symmetry: About any meridian.

Features Scale is true along each meridian and the one or two selected standard
parallels. Scale is constant along any parallel. This projection is free
of distortion along the two standard parallels. Distortion is constant
along any other parallel. This projection provides a compromise in
distortion between conformal and equal-area conic projections, of which
it is neither.

Parallels The cone of projection has interesting limiting forms. If a pole is
selected as a single standard parallel, the cone is a plane, and an
Equidistant Azimuthal projection results. If two parallels are chosen,
not symmetric about the Equator, then an Equidistant Conic projection
results. If a pole is selected as one of the standard parallels, then the
projected pole is a point, otherwise the projected pole is an arc. If the
Equator is so chosen, the cone becomes a cylinder and a Plate Carrée
projection results. If two parallels equidistant from the Equator are
chosen as the standard parallels, an Equidistant Cylindrical projection
results. The default parallels are [15 75].

Remarks In a rudimentary form, this projection dates back to Claudius Ptolemy,
about A.D. 100. Improvements were developed by Johannes Ruysch in
1508, Gerardus Mercator in the late 16th century, and Nicolas de l’Isle
in 1745. It is also known as the Simple Conic or Conic projection.

12-49

Equidistant Conic Projection

Limitations Longitude data greater than 135º east or west of the central meridian
is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqdconic', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also eqdconicstd

12-50

Equidistant Conic Projection — Standard

Syntax eqdconicstd

Graticule Meridians: Equally spaced straight lines converging to a common point,
usually beyond the pole. The angles between the meridians are less
than the true angles.

Parallels: Equally spaced concentric circular arcs centered on the point
of meridanal convergence.

Poles: Normally circular arcs, enclosing the same angle as the displayed
parallels.

Symmetry: About any meridian.

Features eqdconicstd implements the Equidistant Conic projection directly on a
reference ellipsoid, consistent with the industry-standard definition of
this projection. See eqdconic for an alternative implementation based
on rotating the rectifying sphere.

Scale is true along each meridian and the one or two selected standard
parallels. Scale is constant along any parallel. This projection is free
of distortion along the two standard parallels. Distortion is constant
along any other parallel. This projection provides a compromise in
distortion between conformal and equal-area conic projections, of which
it is neither.

Parallels The cone of projection has interesting limiting forms. If a pole is
selected as a single standard parallel, the cone is a plane, and an
Equidistant Azimuthal projection results. If two parallels are chosen,
not symmetric about the Equator, then an Equidistant Conic projection
results. If a pole is selected as one of the standard parallels, then the
projected pole is a point, otherwise the projected pole is an arc. If the
Equator is so chosen, the cone becomes a cylinder and a Plate Carrée
projection results. If two parallels equidistant from the Equator are
chosen as the standard parallels, an Equidistant Cylindrical projection
results. The default parallels are [15 75].

12-51

Equidistant Conic Projection — Standard

Remarks In a rudimentary form, this projection dates back to Claudius Ptolemy,
about A.D. 100. Improvements were developed by Johannes Ruysch in
1508, Gerardus Mercator in the late 16th century, and Nicolas de l’Isle
in 1745. It is also known as the Simple Conic or Conic projection.

Limitations Longitude data greater than 135º east or west of the central meridian
is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqdconicstd', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also eqdconic

12-52

Equidistant Cylindrical Projection

Classification Cylindrical

Syntax eqdcylin

Graticule Meridians: Equally spaced straight parallel lines more than half as
long as the Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to and
having wider spacing than the meridians.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is a projection onto a cylinder secant at the standard parallels.
Distortion of both shape and area increase with distance from the
standard parallels. Scale is true along all meridians (i.e., it is
equidistant) and the standard parallels and is constant along any
parallel and along the parallel of opposite sign.

Parallels For cylindrical projections, only one standard parallel is specified. The
other standard parallel is the same latitude with the opposite sign. For
this projection, any latitude can be chosen; the default is arbitrarily
set to 30º.

Remarks This projection was first used by Marinus of Tyre about A.D. 100.
Special forms of this projection are the Plate Carrée, with a standard
parallel at 0º, and the Gall Isographic, with standard parallels at
45ºN and S. Other names for this projection include Equirectangular,
Rectangular, Projection of Marinus, La Carte Parallélogrammatique,
and Die Rechteckige Plattkarte.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqdcylin', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-53

Equidistant Cylindrical Projection

12-54

Fournier Projection

Classification Pseudocylindrical

Syntax fournier

Graticule Meridians: Equally spaced elliptical curves converging at the poles.

Parallels: Straight lines.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features This projection is equal-area. Scale is constant along any parallel or
pair of parallels equidistant from the Equator. This projection is neither
equidistant nor conformal.

Parallels There is no standard parallel for this projection.

Remarks This projection was first described in 1643 by Georges Fournier. This is
actually his second projection, the Fournier II.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('fournier', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-55

Fournier Projection

12-56

Gall Isographic Projection

Classification Cylindrical

Syntax giso

Graticule Meridians: Equally spaced straight parallel lines more than half as
long as the Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to and
having wider spacing than the meridians.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is a projection onto a cylinder secant at the 45º parallels. Distortion
of both shape and area increase with distance from the standard
parallels. Scale is true along all meridians (i.e., it is equidistant) and
the two standard parallels, and is constant along any parallel and along
the parallel of opposite sign.

Parallels For cylindrical projections, only one standard parallel is specified. The
other standard parallel is the same latitude with the opposite sign. For
this projection, the standard parallel is by definition fixed at 45º.

Remarks This projection is a specific case of the Equidistant Cylindrical
projection, with standard parallels at 45ºN and S.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('giso', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-57

Gall Isographic Projection

12-58

Gall Orthographic Projection

Classification Cylindrical

Syntax gortho

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an orthographic projection onto a cylinder secant at the 45º
parallels. It is equal-area, but distortion of shape increases with
distance from the standard parallels. Scale is true along the standard
parallels and constant between two parallels equidistant from the
Equator. This projection is not equidistant.

Parallels For cylindrical projections, only one standard parallel is specified. The
other standard parallel is the same latitude with the opposite sign. For
this projection, the standard parallel is by definition fixed at 45º.

Remarks This projection is named for James Gall, who originated it in 1855 and
is a special form of the Equal-Area Cylindrical projection secant at 45ºN
and S. This projection is also known as the Peters projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('gortho', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-59

Gall Orthographic Projection

12-60

Gall Stereographic Projection

Classification Cylindrical

Syntax gstereo

Graticule Meridians: Equally spaced straight parallel lines 0.77 as long as the
Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing increases toward the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is a perspective projection from a point on the Equator opposite
a given meridian onto a cylinder secant at the 45º parallels. It is not
equal-area, equidistant, or conformal. Scale is true along the standard
parallels and constant between two parallels equidistant from the
Equator. There is no distortion along the standard parallels, but it
increases moderately away from these parallels, becoming severe at
the poles.

Parallels For cylindrical projections, only one standard parallel is specified. The
other standard parallel is the same latitude with the opposite sign. For
this projection, the standard parallel is by definition fixed at 45º.

Remarks This projection was presented by James Gall in 1855. It is also
known simply as the Gall projection. It is a special form of the Braun
Perspective Cylindrical projection secant at 45ºN and S.

Limitations This projection is available only on the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('gstereo', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-61

Gall Stereographic Projection

12-62

Globe

Classification Spherical

Syntax globe

Graticule This map display is not a true map projection. It is constructed by
calculating a three-dimensional frame and displaying the map objects
on the surface of this frame.

Features In the three-dimensional sense, globe is true in scale, equal-area,
conformal, minimum error, and equidistant everywhere. When
displayed, however, it looks like an Orthographic azimuthal projection,
provided that the MATLAB axes Projection property is set to
'orthographic'.

Parallels The globe requires no standard parallels.

Remarks This is the only three-dimensional representation provided for display.
Unless some other display purpose requires three dimensions, the
Orthographic projection’s display is equivalent.

Example % Set up axes
axesm ('globe','Grid', 'on');
view(60,60)
axis off

% Display a surface
load geoid
meshm(geoid, geoidrefvec)

% Display coastline vectors
load coast
plotm(lat, long)

12-63

Globe

12-64

Gnomonic Projection

Classification Azimuthal

Syntax gnomonic

Graticule The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central
pole. The angles displayed are the true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole.
Spacing increases rapidly away from this pole. The Equator and the
opposite hemisphere cannot be shown

Pole: The central pole is a point; the other pole is not shown.

Symmetry: About any meridian.

Features This is a perspective projection from the center of the globe on a plane
tangent at the center point, which is a pole in the common polar aspect,
but can be any point. Less than one hemisphere can be shown with this
projection, regardless of its center point. The significant property of this
projection is that all great circles are straight lines. This is useful in
navigation, as a great circle is the shortest path between two points on
the globe. Only the center point enjoys true scale and zero distortion.
This projection is neither conformal nor equal-area.

Parallels There are no standard parallels for azimuthal projections.

Remarks This projection may have been first developed by Thales around 580
B.C. Its name is derived from the gnomon, the face of a sundial, since
the meridians radiate like hour markings. This projection is also known
as a Gnomic or Central projection.

Limitations This projection is available only on the sphere. Data greater than 65º
distant from the center point is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('gnomic', 'Frame', 'on', 'Grid', 'on');

12-65

Gnomonic Projection

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-66

Goode Homolosine Projection

Classification Pseudocylindrical

Syntax goode

Graticule Central Meridian: Straight line 0.44 as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves between the
40º44’11.8’’ parallels and elliptical arcs elsewhere, all concave toward
the central meridian. The result is a slight, visible bend in the
meridians at 40º44’11.8’’ N and S.

Parallels: Straight parallel lines, perpendicular to the central meridian.
Equally spaced between the 40º44’11.8’’ parallels, with gradually
decreasing spacing outside these parallels.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along all parallels and the
central meridian between 40º44’11.8’’ N and S, and is constant along any
parallel and between any pair of parallels equidistant from the Equator
for all latitudes. Its distortion is identical to that of the Sinusoidal
projection between 40º44’11.8’’ N and S, and to that of the Mollweide
projection elsewhere. This projection is not conformal or equidistant.

Parallels This projection has one standard parallel, which is by definition fixed
at 0º.

Remarks This projection was developed by J. Paul Goode in 1916. It is sometimes
called simply the Homolosine projection, and it is usually used in an
interrupted form. It is a merging of the Sinusoidal and Mollweide
projections.

Limitations This projection is available in an uninterrupted form only.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('goode', 'Frame', 'on', 'Grid', 'on');

12-67

Goode Homolosine Projection

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-68

Hammer Projection

Classification Modified Azimuthal

Syntax hammer

Graticule Meridians: Central meridian is a straight line half the length of the
Equator. Other meridians are complex curves, equally spaced along the
Equator, and concave toward the central meridian.

Parallels: Equator is straight. Other parallels are complex curves,
equally spaced along the central meridian, and concave toward the
nearest pole.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features This projection is equal-area. The only point free of distortion is
the center point. Distortion of shape is moderate throughout. This
projection has less angular distortion on the outer meridians near the
poles than pseudoazimuthal projections

Parallels There is no standard parallel for this projection.

Remarks This projection was presented by H. H. Ernst von Hammer in 1892.
It is a modification of the Lambert Azimuthal Equal Area projection.
Inspired by Aitoff projection, it is also known as the Hammer-Aitoff.
It in turn inspired the Briesemeister, a modified oblique Hammer
projection. John Bartholomew’s Nordic projection is an oblique
Hammer centered on 45 degrees north and the Greenwich meridian.
The Hammer projection is used in whole-world maps and astronomical
maps in galactic coordinates.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('hammer', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-69

Hammer Projection

12-70

Hatano Asymmetrical Equal-Area Projection

Classification Pseudocylindrical

Syntax hatano

Graticule Central Meridian: Straight line 0.48 as long as the Equator.

Other Meridians: Equally spaced elliptical arcs concave toward the
central meridian. The eccentricity of each ellipse changes at the
Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
central meridian. Spacing is not symmetrical about the Equator.

Poles: The North Pole is a line two-thirds the length of the Equator; the
South Pole is a line three-fourths the length of the Equator.

Symmetry: About the central meridian but not the Equator.

Features This is an equal-area projection. Scale is true along 40º42’N and
38º27’S, and is constant along any parallel but generally not between
pairs of parallels equidistant from the Equator. It is free of distortion
only along the central meridian at 40º42’N and 38º27’S. This projection
is not conformal or equidistant.

Parallels Because of the asymmetrical nature of this projection, two standard
parallels must be specified. The standard parallels are by definition
fixed at 40º42’N and 38º27’S.

Remarks This projection was presented by Masataka Hatano in 1972.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('hatano', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-71

Hatano Asymmetrical Equal-Area Projection

12-72

Kavraisky V Projection

Classification Pseudocylindrical

Syntax kavrsky5

Graticule Meridians: Complex curves converging at the poles. A sine function is
used for y, but the meridians are not sine curves.

Parallels: Unequally spaced straight lines.

Poles: Points.

Symmetry: About the Equator and the central meridian.

Features This is an equal-area projection. Scale is true along the fixed standard
parallels at 35º, and 0.9 true along the Equator. This projection is
neither conformal nor equidistant.

Parallels The fixed standard parallels are at 35º.

Remarks This projection was described by V. V. Kavraisky in 1933.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('kavrsky5', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-73

Kavraisky V Projection

12-74

Kavraisky VI Projection

Classification Pseudocylindrical

Syntax kavrsky6

Graticule Central Meridian: Straight line half the length of the Equator.

Meridians: Sine curves (60º segments).

Parallels: Unequally spaced straight lines.

Poles: Straight lines half the length of the Equator.

Symmetry: About the Equator and the central meridian.

Features This is an equal-area projection. Scale is constant along any parallel
or pair of equidistant parallels. This projection is neither conformal
nor equidistant.

Parallels There are no standard parallels for this projection.

Remarks This projection was described by V. V. Kavraisky in 1936. It is also
called the Wagner I, for Karlheinz Wagner, who described it in 1932.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('kavrsky6', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-75

Kavraisky VI Projection

12-76

Lambert Azimuthal Equal-Area Projection

Classification Azimuthal

Syntax eqaazim

Graticule The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central
pole. The angles displayed are the true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. The
entire Earth can be shown. Spacing decreases away from the central
pole.

Pole: The central pole is a point; the other pole is a bounding circle
with 1.41 the radius of the Equator.

Symmetry: About any meridian.

Features This nonperspective projection is equal-area. Only the center point is
free of distortion, but distortion is moderate within 90º of this point.
Scale is true only at the center point, increasing tangentially and
decreasing radially with distance from the center point. This projection
is neither conformal nor equidistant.

Parallels There are no standard parallels for azimuthal projections.

Remarks This projection was presented by Johann Heinrich Lambert in 1772. It
is also known as the Zenithal Equal-Area and the Zenithal Equivalent
projection, and the Lorgna projection in its polar aspect.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqaazim', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-77

Lambert Azimuthal Equal-Area Projection

12-78

Lambert Conformal Conic Projection

Classification Conic

Syntax lambert

Graticule Meridians: Equally spaced straight lines converging at one of the poles.
The angles between the meridians are less than the true angles.

Parallels: Unequally spaced concentric circular arcs centered on the
pole of convergence. Spacing of parallels increases away from the
central latitudes.

Poles: The pole nearest a standard parallel is a point, the other cannot
be shown.

Symmetry: About any meridian.

Features Scale is true along the one or two selected standard parallels. Scale is
constant along any parallel and is the same in every direction at any
point. This projection is free of distortion along the standard parallels.
Distortion is constant along any other parallel. This projection is
conformal everywhere but the poles; it is neither equal-area nor
equidistant.

Parallels The cone of projection has interesting limiting forms. If a pole is selected
as a single standard parallel, the cone is a plane, and a Stereographic
Azimuthal projection results. If two parallels are chosen, not symmetric
about the Equator, then a Lambert Conformal Conic projection results.
If a pole is selected as one of the standard parallels, then the projected
pole is a point, otherwise the projected pole is an arc. If the Equator or
two parallels equidistant from the Equator are chosen as the standard
parallels, the cone becomes a cylinder, and a Mercator projection
results. The default parallels are [15 75].

Remarks This projection was presented by Johann Heinrich Lambert in 1772 and
is also known as a Conical Orthomorphic projection.

12-79

Lambert Conformal Conic Projection

Limitations Longitude data greater than 135º east or west of the central meridian
is trimmed. The default map limits are [0 90] to avoid extreme area
distortion.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('lambert', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also lambertstd

12-80

Lambert Conformal Conic Projection — Standard

Classification Conic

Syntax lambertstd

Graticule Meridians: Equally spaced straight lines converging at one of the poles.
The angles between the meridians are less than the true angles.

Parallels: Unequally spaced concentric circular arcs centered on the
pole of convergence. Spacing of parallels increases away from the
central latitudes.

Poles: The pole nearest a standard parallel is a point, the other cannot
be shown.

Symmetry: About any meridian.

Features lambertstd implements the Lambert Conformal Conic projection
directly on a reference ellipsoid, consistent with the industry-standard
definition of this projection. See lambert for an alternative
implementation based on rotating the authalic sphere.

Scale is true along the one or two selected standard parallels. Scale is
constant along any parallel and is the same in every direction at any
point. This projection is free of distortion along the standard parallels.
Distortion is constant along any other parallel. This projection is
conformal everywhere but the poles; it is neither equal-area nor
equidistant.

Parallels The cone of projection has interesting limiting forms. If a pole is selected
as a single standard parallel, the cone is a plane, and a Stereographic
Azimuthal projection results. If two parallels are chosen, not symmetric
about the Equator, then a Lambert Conformal Conic projection results.
If a pole is selected as one of the standard parallels, then the projected
pole is a point, otherwise the projected pole is an arc. If the Equator or
two parallels equidistant from the Equator are chosen as the standard
parallels, the cone becomes a cylinder, and a Mercator projection
results. The default parallels are [15 75].

12-81

Lambert Conformal Conic Projection — Standard

Remarks This projection was presented by Johann Heinrich Lambert in 1772 and
is also known as a Conical Orthomorphic projection.

Limitations Longitude data greater than 135º east or west of the central meridian
is trimmed. The default map limits are [0 90] to avoid extreme area
distortion.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('lambertstd', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also lambert

12-82

Lambert Equal-Area Cylindrical Projection

Classification Cylindrical

Syntax lambcyln

Graticule Meridians: Equally spaced straight parallel lines 0.32 as long as the
Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an orthographic projection onto a cylinder tangent at the
Equator. It is equal-area, but distortion of shape increases with
distance from the Equator. Scale is true along the Equator and constant
between two parallels equidistant from the Equator. This projection is
not equidistant.

Parallels For cylindrical projections, only one standard parallel is specified. The
other standard parallel is the same latitude with the opposite sign. For
this projection, the standard parallel is by definition fixed at 0º.

Remarks This projection is named for Johann Heinrich Lambert and is a special
form of the Equal-Area Cylindrical projection tangent at the Equator.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('lambcyln', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-83

Lambert Equal-Area Cylindrical Projection

12-84

Loximuthal Projection

Classification Pseudocylindrical

Syntax loximuth

Graticule Central Meridian: Straight line at least half as long as the Equator.
Actual length depends on the choice of central latitude. Length is 0.5
when the central latitude is the Equator, for example, and 0.65 for
central latitudes of 40º.

Other Meridians: Complex curves intersecting at the poles and concave
toward the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the
central meridian.

Poles: Points.

Symmetry: About the central meridian. Symmetry about the Equator
only when it is the central latitude.

Features This projection has the special property that from the central point (the
intersection of the central latitude with the central meridian), rhumb
lines (loxodromes) are shown as straight, true to scale, and correct in
azimuth from the center. This differs from the Mercator projection,
in that rhumb lines are here shown in true scale and that unlike the
Mercator, this projection does not maintain true azimuth for all points
along the rhumb lines. Scale is true along the central meridian and is
constant along any parallel, but not, generally, between parallels. It is
free of distortion only at the central point and can be severely distorted
in places. However, this projection is designed for its specific special
property, in which distortion is not a concern.

Parallels For this projection, only one standard parallel is specified: the central
latitude described above. Specification of this central latitude defines
the center of the Loximuthal projection. The default value is 0º.

12-85

Loximuthal Projection

Remarks This projection was presented by Karl Siemon in 1935 and
independently by Waldo R. Tobler in 1966. The Bordone Oval projection
of 1520 was very similar to the Equator-centered Loximuthal.

Limitations This projection is available only for the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('loximuth', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-86

McBryde-Thomas Flat-Polar Parabolic Projection

Classification Pseudocylindrical

Syntax flatplrp

Graticule Central Meridian: Straight line 0.48 as long as the Equator.

Other Meridians: Equally spaced parabolic curves concave toward the
central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
central meridian. Spacing is greatest near the Equator.

Poles: Lines one-third as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 45º30’ parallels
and is constant along any parallel and between any pair of parallels
equidistant from the Equator. Distortion is severe near the outer
meridians at high latitudes, but less so than on the pointed-polar
projections. It is free of distortion only at the two points where the
central meridian intersects the 45º30’ parallels. This projection is not
conformal or equidistant.

Parallels For this projection, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. The
standard parallel is by definition fixed at 45º30’.

Remarks This projection was presented by F. Webster McBryde and Paul D.
Thomas in 1949.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('flatplrp', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-87

McBryde-Thomas Flat-Polar Parabolic Projection

12-88

McBryde-Thomas Flat-Polar Quartic Projection

Classification Pseudocylindrical

Syntax flatplrq

Graticule Central Meridian: Straight line 0.45 as long as the Equator.

Other Meridians: Equally spaced quartic (fourth-order equation) curves
concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
central meridian. Spacing is greatest near the Equator.

Poles: Lines one-third as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 33º45’ parallels
and is constant along any parallel and between any pair of parallels
equidistant from the Equator. Distortion is severe near the outer
meridians at high latitudes, but less so than on the pointed-polar
projections. It is free of distortion only at the two points where the
central meridian intersects the 33º45’ parallels. This projection is not
conformal or equidistant.

Parallels For this projection, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. The
standard parallel is by definition fixed at 33º45’.

Remarks This projection was presented by F. Webster McBryde and Paul D.
Thomas in 1949, and is also known simply as the Flat-Polar Quartic
projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('flatplrq', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-89

McBryde-Thomas Flat-Polar Quartic Projection

12-90

McBryde-Thomas Flat-Polar Sinusoidal Projection

Classification Pseudocylindrical

Syntax flatplrs

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves intersecting at the
poles and concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
central meridian. Spacing is widest near the Equator.

Poles: Lines one-third as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This projection is equal-area. Scale is true along the 55º51’ parallels
and is constant along any parallel and between any pair of parallels
equidistant from the Equator. It is free of distortion only at the two
points where the central meridian intersects the 55º51’ parallels. This
projection is not conformal or equidistant.

Parallels For this projection, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. The
standard parallel is by definition fixed at 55º51’.

Remarks This projection was presented by F. Webster McBryde and Paul D.
Thomas in 1949.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('flatplrs', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-91

McBryde-Thomas Flat-Polar Sinusoidal Projection

12-92

Mercator Projection

Classification Cylindrical

Syntax mercator

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing increases toward the poles.

Poles: Cannot be shown.

Symmetry: About any meridian or the Equator.

Features This is a projection with parallel spacing calculated to maintain
conformality. It is not equal-area, equidistant, or perspective. Scale is
true along the standard parallels and constant between two parallels
equidistant from the Equator. It is also constant in all directions near
any given point. Scale becomes infinite at the poles. The appearance
of the Mercator projection is unaffected by the selection of standard
parallels; they serve only to define the latitude of true scale.

The Mercator, which may be the most famous of all projections, has the
special feature that all rhumb lines, or loxodromes (lines that make
equal angles with all meridians, i.e., lines of constant heading), are
straight lines. This makes it an excellent projection for navigational
purposes. However, the extreme area distortion makes it unsuitable
for general maps of large areas.

Parallels For cylindrical projections, only one standard parallel is specified. The
other standard parallel is the same latitude with the opposite sign. For
this projection, any latitude less than 86º may be chosen; the default is
arbitrarily set to 0º.

Remarks The Mercator projection is named for Gerardus Mercator, who
presented it for navigation in 1569. It is now known to have been used
for the Tunhuang star chart as early as 940 by Ch’ien Lo-Chih. It was
first used in Europe by Erhard Etzlaub in 1511. It is also, but rarely,

12-93

Mercator Projection

called the Wright projection, after Edward Wright, who developed the
mathematics behind the projection in 1599.

Limitations Data at latitudes greater than 86º is trimmed to prevent large y-values
from dominating the display.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('mercator', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-94

Miller Cylindrical Projection

Classification Cylindrical

Syntax miller

Graticule Meridians: Equally spaced straight parallel lines 0.73 as long as the
Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to
the meridians. Spacing increases toward the poles, less rapidly than
that of the Mercator projection.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is a projection with parallel spacing calculated to maintain a look
similar to the Mercator projection while reducing the distortion near
the poles and allowing the poles to be displayed. It is not equal-area,
equidistant, conformal, or perspective. Scale is true along the Equator
and constant between two parallels equidistant from the Equator.
There is no distortion near the Equator, and it increases moderately
away from the Equator, but it becomes severe at the poles.

The Miller Cylindrical projection is derived from the Mercator
projection; parallels are spaced from the Equator by calculating the
distance on the Mercator for a parallel at 80% of the true latitude and
dividing the result by 0.8. The result is that the two projections are
almost identical near the Equator.

Parallels For cylindrical projections, only one standard parallel is specified. The
other standard parallel is the same latitude with the opposite sign. For
this projection, the standard parallel is by definition fixed at 0º.

Remarks This projection was presented by Osborn Maitland Miller of the
American Geographical Society in 1942. It is often used in place of
the Mercator projection for atlas maps of the world, for which it is
somewhat more appropriate.

12-95

Miller Cylindrical Projection

Limitations This projection is available only for the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('miller', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-96

Mollweide Projection

Classification Pseudocylindrical

Syntax mollweid

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Meridians 90º east and west of the central meridian
form a circle. The others are equally spaced semiellipses intersecting at
the poles and concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to
the central meridian. Spacing is greatest toward the Equator, but the
spacing changes gradually.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 40º44’ parallels
and is constant along any parallel and between any pair of parallels
equidistant from the Equator. It is free of distortion only at the two
points where the 40º44’ parallels intersect the central meridian. This
projection is not conformal or equidistant.

Parallels For this projection, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. The
standard parallel is by definition fixed at 40º44’.

Remarks This projection was presented by Carl B. Mollweide in 1805. Its other
names include the Homolographic, the Homalographic, the Babinet,
and the Elliptical projections. It is occasionally used for thematic world
maps, and it is combined with the Sinusoidal to produce the Goode
Homolosine projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('mollweid', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-97

Mollweide Projection

12-98

Murdoch I Conic Projection

Classification Conic

Syntax murdoch1

Graticule Meridians: Equally spaced straight lines converging at one of the poles.

Parallels: Equally spaced concentric circular arcs.

Poles: Arcs, one of which might become a point in the limit.

Symmetry: About any meridian.

Features This is an equidistant projection that is nearly minimum-error. Scale is
true along any meridian and is constant along any parallel. Scale is also
true along two standard parallels. These must be calculated, however
(see remark on parallels below). The total area of the mapped area is
correct, but it is not equal-area everywhere.

Parallels The parallels for this projection are not standard parallels, but rather
limiting parallels. The special feature of this map, correct total area,
holds between these parallels. The default parallels are [15 75].

Remarks Described by Patrick Murdoch in 1758.

Limitations This projection is available only for the sphere. Longitude data greater
than 135º east or west of the central meridian is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('murdoch1', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-99

Murdoch I Conic Projection

12-100

Murdoch III Minimum Error Conic Projection

Classification Conic

Syntax murdoch3

Graticule Meridians: Equally spaced straight lines converging at one of the poles.

Parallels: Equally spaced concentric circular arcs.

Poles: Arcs, one of which might become a point in the limit.

Symmetry: About any meridian.

Features This is an equidistant projection that is minimum-error. Scale is true
along any meridian and is constant along any parallel. Scale is also
true along two standard parallels. These must be calculated, however
(see remark on parallels below). The total area of the mapped area is
correct, but it is not equal-area everywhere.

Parallels The parallels for this projection are not standard parallels, but rather
limiting parallels. The special feature of this map, correct total area,
holds between these parallels. The default parallels are [15 75].

Remarks Described by Patrick Murdoch in 1758, with errors corrected by Everett
in 1904.

Limitations This projection is available only for the sphere. Longitude data greater
than 135º east or west of the central meridian is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('murdoch3', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-101

Murdoch III Minimum Error Conic Projection

12-102

Orthographic Projection

Classification Azimuthal

Syntax ortho

Graticule The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central
pole. The angles displayed are the true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole.
Spacing decreases away from this pole. The opposite hemisphere cannot
be shown.

Pole: The central pole is a point; the other pole is not shown.

Symmetry: About any meridian.

Features This is a perspective projection on a plane tangent at the center point
from an infinite distance (that is, orthogonally). The center point is a
pole in the common polar aspect, but can be any point. This projection
has two significant properties. It looks like a globe, providing views of
the Earth resembling those seen from outer space. Additionally, all
great and small circles are either straight lines or elliptical arcs on this
projection. Scale is true only at the center point and is constant in the
circumferential direction along any circle having the center point as its
center. Distortion increases rapidly away from the center point, the
only place that is distortion-free. This projection is neither conformal
nor equal-area.

Parallels There are no standard parallels for azimuthal projections.

Remarks This projection appears to have been developed by the Egyptians and
Greeks by the second century B.C.

Limitations This projection is available only for the sphere. Data greater than 89º
distant from the center point is trimmed.

12-103

Orthographic Projection

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('ortho', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-104

Plate Carrée Projection

Classification Cylindrical

Syntax pcarree

Graticule Meridians: Equally spaced straight parallel lines half as long as the
Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to and
having the same spacing as the meridians.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is a projection onto a cylinder tangent at the Equator. Distortion of
both shape and area increases with distance from the Equator. Scale is
true along all meridians (i.e., it is equidistant) and the Equator and is
constant along any parallel and along the parallel of opposite sign.

Parallels For cylindrical projections, only one standard parallel is specified. The
other standard parallel is the same latitude with the opposite sign. For
this projection, the standard parallel is by definition fixed at 0º.

Remarks This projection, like the more general Equidistant Cylindrical, is
credited to Marinus of Tyre, thought to have invented it about A.D.
100. It may, in fact, have been originated by Erastosthenes, who lived
approximately 275–195 B.C. The Plate Carrée has the most simply
constructed graticule of any projection. It was used frequently in the
15th and 16th centuries and is quite common today in very simple
computer mapping programs. It is the simplest and limiting form of
the Equidistant Cylindrical projection. Another name for the Plate
Carrée projection is the Simple Cylindrical. Its transverse aspect is the
Cassini projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('pcarree', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-105

Plate Carrée Projection

12-106

Polyconic Projection

Classification Polyconic

Syntax polycon

Graticule Central Meridian: A straight line.

Meridians: Complex curves spaced equally along the Equator and each
parallel, and concave toward the central meridian.

Parallels: The Equator is a straight line. All other parallels are
nonconcentric circular arcs spaced at true distances along the central
meridian.

Poles: Normally circular arcs, enclosing the same angle as the displayed
parallels.

Symmetry: About the Equator or the central meridian.

Features For this projection, each parallel has a curvature identical to its
curvature on a cone tangent at that latitude. Since each parallel has its
own cone, this is a “polyconic” projection. Scale is true along the central
meridian and along each parallel. This projection is free of distortion
only along the central meridian; distortion can be severe at extreme
longitudes. This projection is neither conformal nor equal-area.

Parallels By definition, this projection has no standard parallels, since every
parallel is a standard parallel.

Remarks This projection was apparently originated about 1820 by Ferdinand
Rudolph Hassler. It is also known as the American Polyconic and the
Ordinary Polyconic projection.

Limitations Longitude data greater than 75º east or west of the central meridian
is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('polycon', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);

12-107

Polyconic Projection

tissot;

See Also polyconstd

12-108

Polyconic Projection — Standard

Classification Polyconic

Syntax polyconstd

Graticule Central Meridian: A straight line.

Meridians: Complex curves spaced equally along the Equator and each
parallel, and concave toward the central meridian.

Parallels: The Equator is a straight line. All other parallels are
nonconcentric circular arcs spaced at true distances along the central
meridian.

Poles: Normally circular arcs, enclosing the same angle as the displayed
parallels.

Symmetry: About the Equator or the central meridian.

Features polyconstd implements the Polyconic projection directly on a reference
ellipsoid, consistent with the industry-standard definition of this
projection. See polycon for an alternative implementation based on
rotating the rectifying sphere.

For this projection, each parallel has a curvature identical to its
curvature on a cone tangent at that latitude. Since each parallel has its
own cone, this is a “polyconic” projection. Scale is true along the central
meridian and along each parallel. This projection is free of distortion
only along the central meridian; distortion can be severe at extreme
longitudes. This projection is neither conformal nor equal-area.

Parallels By definition, this projection has no standard parallels, since every
parallel is a standard parallel.

Remarks This projection was apparently originated about 1820 by Ferdinand
Rudolph Hassler. It is also known as the American Polyconic and the
Ordinary Polyconic projection.

Limitations Longitude data greater than 75º east or west of the central meridian
is trimmed.

12-109

Polyconic Projection — Standard

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('polyconstd ', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also polycon

12-110

Putnins P5 Projection

Classification Pseudocylindrical

Syntax putnins5

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced portions of hyperbolas intersecting at
the poles and concave toward the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the
central meridian.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features Scale is true along the 21º14’ parallels and is constant along any
parallel, between any pair of parallels equidistant from the Equator,
and along the central meridian. It is not free of distortion at any point.
This projection is not equal-area, conformal, or equidistant.

Parallels For this projection, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. The
standard parallel is by definition fixed at 21º14’.

Remarks This projection was presented by Reinholds V. Putnins in 1934.

Limitations This projection is available only for the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('putnin5', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-111

Putnins P5 Projection

12-112

Quartic Authalic Projection

Classification Pseudocylindrical

Syntax quartic

Graticule Central Meridian: Straight line 0.45 as long as the Equator.

Other Meridians: Equally spaced quartic (fourth-order equation) curves
concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to
the central meridian. Spacing changes gradually and is greatest near
the Equator.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the Equator
and is constant along any parallel and between any pair of parallels
equidistant from the Equator. Distortion is severe near the outer
meridians at high latitudes, but less so than on the Sinusoidal
projection. It is free of distortion along the Equator. This projection
is not conformal or equidistant.

Parallels This projection has one standard parallel, which is by definition fixed
at 0º.

Remarks This projection was presented by Karl Siemon in 1937 and
independently by Oscar Sherman Adams in 1945.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('quartic', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-113

Quartic Authalic Projection

12-114

Robinson Projection

Classification Pseudocylindrical

Syntax robinson

Graticule Central Meridian: Straight line 0.51 as long as the Equator.

Other Meridians: Equally spaced, resemble elliptical arcs and are
concave toward the central meridian.

Parallels: Straight parallel lines, perpendicular to the central meridian.
Spacing is equal between the 38º parallels, decreasing outside these
limits.

Poles: Lines 0.53 as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features Scale is true along the 38º parallels and is constant along any parallel
or between any pair of parallels equidistant from the Equator. It is not
free of distortion at any point, but distortion is very low within about 45º
of the center and along the Equator. This projection is not equal-area,
conformal, or equidistant; however, it is considered to look right for
world maps, and hence is widely used by Rand McNally, the National
Geographic Society, and others. This feature is achieved through the
use of tabular coordinates rather than mathematical formulae for the
graticules.

Parallels For this projection, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. The
standard parallel is by definition fixed at 38º.

Remarks This projection was presented by Arthur H. Robinson in 1963, and is
also called the Orthophanic projection, which means right appearing.

Limitations This projection is available only for the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('robinson', 'Frame', 'on', 'Grid', 'on');

12-115

Robinson Projection

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-116

Sinusoidal Projection

Classification Pseudocylindrical

Syntax sinusoid

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves intersecting at the
poles and concave toward the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the
central meridian.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features This projection is equal-area. Scale is true along every parallel and
along the central meridian. There is no distortion along the Equator
or along the central meridian, but it becomes severe near the outer
meridians at high latitudes.

Parallels This projection has one standard parallel, which is by definition fixed
at 0º.

Remarks This projection was developed in the 16th century. It was used by Jean
Cossin in 1570 and by Jodocus Hondius in Mercator atlases of the early
17th century. It is the oldest pseudocylindrical projection currently in
use, and is sometimes called the Sanson-Flamsteed or the Mercator
Equal-Area projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('sinusoid', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-117

Sinusoidal Projection

12-118

Stereographic Projection

Classification Azimuthal

Syntax stereo

Graticule The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central
pole. The angles displayed are the true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole.
Spacing increases gradually away from this pole. The opposite
hemisphere cannot be shown

Pole: The central pole is a point; the other pole is not shown.

Symmetry: About any meridian.

Features This is a perspective projection on a plane tangent at the center point
from the point antipodal to the center point. The center point is a pole
in the common polar aspect, but can be any point. This projection has
two significant properties. It is conformal, being free from angular
distortion. Additionally, all great and small circles are either straight
lines or circular arcs on this projection. Scale is true only at the center
point and is constant along any circle having the center point as its
center. This projection is not equal-area.

Parallels There are no standard parallels for azimuthal projections.

Remarks The polar aspect of this projection appears to have been developed by
the Egyptians and Greeks by the second century B.C.

Limitations Data greater than 90º distant from the center point is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('stereo', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-119

Stereographic Projection

12-120

Tissot Modified Sinusoidal Projection

Classification Pseudocylindrical

Syntax modsine

Graticule Meridians: Sine curves converging at the Poles.

Parallels: Equally spaced straight lines.

Poles: Points.

Symmetry: About the Equator and the central meridian

Features This is an equal-area projection. Scale is constant along any parallel
or any pair of equidistant parallels, and along the central meridian. It
is not equidistant or conformal.

Parallels There are no standard parallels for this projection.

Remarks This projection was first described by N. A. Tissot in 1881

Limitations This projection is available only for the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('modsine', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-121

Transverse Mercator Projection

Classification Cylindrical

Syntax tranmerc

Features This conformal projection is the transverse form of the Mercator
projection and is also known as the Gauss-Krueger projection. It is not
equal area, equidistant, or perspective.

The scale is constant along the central meridian, and increases to the
east and west. The scale at the central meridian can be set true to
scale, or reduced slightly to render the mean scale of the overall map
more correctly.

Remarks The uniformity of scale along its central meridian makes Transverse
Mercator an excellent choice for mapping areas that are elongated
north-to-south. Its best known application is the definition of Universal
Transverse Mercator (UTM) coordinates. Each UTM zone spans only 6
degrees of longitude, but the northern half extends from the equator
all the way to 84 degrees north and the southern half extends from 80
degrees south to the equator. Other map grids based on Transverse
Mercator include many of the state plane zones in the U.S. and the
U.K. National Grid.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('tranmerc', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-122

Transverse Mercator Projection

12-123

Trystan Edwards Cylindrical Projection

Classification Cylindrical

Syntax trystan

Graticule Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
meridians. Spacing is closest near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features This is an orthographic projection onto a cylinder secant at the 37º24’
parallels. It is equal-area, but distortion of shape increases with
distance from the standard parallels. Scale is true along the standard
parallels and constant between two parallels equidistant from the
Equator. This projection is not equidistant.

Parallels For cylindrical projections, only one standard parallel is specified. The
other standard parallel is the same latitude with the opposite sign. For
this projection, the standard parallel is by definition fixed at 37º24’.

Remarks This projection is named for Trystan Edwards, who presented it in
1953. It is a special form of the Equal-Area Cylindrical projection
secant at 37º24’N and S.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('trystan', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-124

Trystan Edwards Cylindrical Projection

12-125

Universal Polar Stereographic System

Classification Azimuthal

Syntax ups

Graticule The graticule described is for the southern zone.

Meridians: Equally spaced straight lines centered on the South Pole.
The angles displayed are the true angles between meridians.

Parallels: Unequally spaced circles centered on the South Pole. Spacing
increases gradually away from the circle of true scale along latitude 87
degrees, 7 minutes N. The opposite pole cannot be shown.

Poles: The South Pole is a point. The North Pole is not shown.

Symmetry: About any meridian.

Features This is a perspective projection on a plane tangent to either the North
or South Pole. It is conformal, being free from angular distortion.
Additionally, all great and small circles are either straight lines or
circular arcs on this projection. Scale is true along latitudes 87 degrees,
7 minutes N or S, and is constant along any other parallel. This
projection is not equal area.

Parallels The parallels 87 degrees, 7 minutes N and S are lines of true scale by
virtue of the scale factor. There are no standard parallels for azimuthal
projections.

Remarks This projection is a special case of the stereographic projection in the
polar aspect. It is used as part of the Universal Transverse Mercator
(UTM) system to extend coverage to the poles. This projection has two
zones: “North” for latitudes 84º N to 90º N, and “South” for latitudes 80º
S to 90º S. The defaults for this projection are: scale factor is 0.994, false
easting and northing are 2,000,000 meters. The international ellipsoid
in units of meters is used as the geoid model.

12-126

Universal Transverse Mercator System

Classification Cylindrical

Syntax utm

Graticule Meridians: Complex curves concave toward the central meridian.

Parallels: Complex curves concave toward the nearest pole.

Poles: Not shown.

Symmetry: About the central meridian or the Equator.

Features This is a conformal projection with parameters chosen to minimize
distortion over a defined set of small areas. It is not equal area,
equidistant, or perspective. Scale is true along two straight lines on
the map approximately 180 kilometers east and west of the central
meridian, and is constant along other straight lines equidistant from
the central meridian. Scale is less than true between, and greater than
true outside the lines of true scale.

Parallels There are no standard parallels for this projection. There are two lines
of zero distortion by virtue of the scale factor.

Remarks The UTM system divides the world between 80º S and 84º degrees N
into a set of quadrangles called zones. Zones generally cover 6 degrees
of longitude and 8 degrees of latitude. Each zone has a set of defined
projection parameters, including central meridian, false eastings and
northings and the reference ellipsoid. The projection equations are
the Gauss-Krüger versions of the Transverse Mercator. The projected
coordinates form a grid system, in which a location is specified by the
zone, easting and northing.

The UTM system was introduced in the 1940s by the U.S. Army. It is
widely used in topographic and military mapping.

12-127

Van der Grinten I Projection

Classification Polyconic

Syntax vgrint1

Graticule Central Meridian: A straight line.

Meridians: Circular curves spaced equally along the equator and
concave toward the central meridian.

Parallels: The Equator is a straight line. All other parallels are circular
arcs concave toward the nearest pole.

Poles: Points.

Symmetry: About the Equator or the central meridian.

Features In this projection, the world is enclosed in a circle. Scale is true
along the Equator and increases rapidly away from the Equator.
Area distortion is extreme near the poles. This projection is neither
conformal nor equal-area.

Parallels There are no standard parallels for this projection.

Remarks This projection was presented by Alphons J. Van der Grinten in 1898.
He obtained a U.S. patent for it in 1904. It is also known simply as the
Van der Grinten projection (without the “I”).

Limitations This projection is available only for the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('vgrint1', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-128

Van der Grinten I Projection

12-129

Vertical Perspective Azimuthal Projection

Classification Azimuthal

Syntax vperspec

Graticule The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central
pole. The angles displayed are true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole.
Spacing decreases away from this pole. The opposite hemisphere cannot
be shown, nor can distant parts of the closer hemisphere. The limit of
visibility depends on the observation altitude.

Poles: The central pole is a point. The other pole is not shown.

Symmetry: About any meridian.

Features This is a perspective projection on a plane tangent at the center point
from a finite distance. Scale is true only at the center point, and is
constant in the circumferential direction along any circle having the
center point as its center. Distortion increases rapidly away from the
center point, the only point which is distortion free. This projection is
neither conformal nor equal area.

Remarks This projection provides views of the globe resembling those seen from a
spacecraft in orbit. The Orthographic projection is a limiting form with
the observer at an infinite distance.

This projection requires a view altitude parameter, which specifies the
observer’s altitude above the origin point. Because this parameter is
unique to this projection and because the projection does not need any
standard parallels, a special workaround is used. Rather than add an
extra map axes property just for vperspec, the MapParallels property
is repurposed instead. You should assign the desired view altitude
value to the MapParallels property. Provide a scalar value for length
in the same units as the earth radius or semi-major axis length used in
the map axes reference ellipsoid ('Geoid') property.

12-130

Vertical Perspective Azimuthal Projection

Limitations This projection is available only for the sphere. Data more distant than
the limit of visibility is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('vperspec', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-131

Wagner IV Projection

Classification Pseudocylindrical

Syntax wagner4

Graticule Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced portions of ellipses concave toward
the central meridian. The meridians 103º55’ east and west of the
central meridian are circular arcs.

Parallels: Unequally spaced straight parallel lines, perpendicular to the
central meridian. Spacing is greatest toward the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This is an equal-area projection. Scale is true along the 42º59’ parallels
and is constant along any parallel and between any pair of parallels
equidistant from the Equator. Distortion is not as extreme near the
outer meridians at high latitudes as for pointed-polar pseudocylindrical
projections, but there is considerable distortion throughout the polar
regions. It is free of distortion only at the two points where the 42º59’
parallels intersect the central meridian. This projection is not conformal
or equidistant.

Parallels For this projection, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. The
standard parallel is by definition fixed at 42º59’.

Remarks This projection was presented by Karlheinz Wagner in 1932.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('wagner4', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-132

Wagner IV Projection

12-133

Werner Projection

Classification Pseudoconic

Syntax werner

Graticule Central Meridian: A straight line.

Meridians: Complex curves connecting points equally spaced along each
parallel and concave toward the central meridian.

Parallels: Concentric circular arcs spaced at true distances along the
central meridian, centered on one of the poles.

Poles: Points.

Symmetry: About the central meridian.

Features This is an equal-area projection. It is a Bonne projection with one of the
poles as its standard parallel. The central meridian is free of distortion.
This projection is not conformal. Its heart shape gives it the additional
descriptor cordiform.

Parallels The standard parallel for this projection is set to 90º N.

Remarks This projection was developed by Johannes Stabius (Stab) about 1500
and was promoted by Johannes Werner in 1514. It is also called the
Stab-Werner projection.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('werner', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-134

Werner Projection

12-135

Wetch Cylindrical Projection

Classification Cylindrical

Syntax wetch

Graticule Central Meridian: Straight line (includes meridian opposite the central
meridian in one continuous line).

Other Meridians: Straight lines if 90º from central meridian, complex
curves concave toward the central meridian otherwise.

Parallels: Complex curves concave toward the nearest pole.

Poles: Points along the central meridian.

Symmetry: About any straight meridian or the Equator.

Features This is a perspective projection from the center of the Earth onto
a cylinder tangent to the central meridian. It is not equal-area,
equidistant, or conformal. Scale is true along the central meridian and
constant between two points equidistant in x and y from the central
meridian. There is no distortion along the central meridian, but it
increases rapidly away from the central meridian in the y-direction.

Parallels For cylindrical projections, only one standard parallel is specified. The
other standard parallel is the same latitude with the opposite sign. For
this projection, which is the transverse aspect of the Central Cylindrical,
the standard parallel of the base projection is by definition fixed at 0º.

Remarks This is the transverse aspect of the Central Cylindrical projection
discussed by J. Wetch in the early 19th century.

Limitations This projection is available only for the sphere. To prevent large
y-values from dominating the display, data at y-values that would
correspond to latitudes of greater than 75º in the normal aspect of the
Central Cylindrical projection is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('wetch', 'Frame', 'on', 'Grid', 'on');

12-136

Wetch Cylindrical Projection

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-137

Wiechel Projection

Classification Pseudoazimuthal

Syntax wiechel

Graticule The graticule described is for a polar aspect.

Meridians: Equally spaced semicircles from pole to pole, concave toward
the west.

Parallels: Concentric circles.

Pole: The central pole is a point; the other pole is a bounding circle.

Symmetry: Radially about the center point.

Features This equal-area projection is a novelty map, usually centered at a pole,
showing semicircular meridians in a pinwheel arrangement. Scale is
correct along the meridians. This projection is not conformal.

Parallels There are no standard parallels for azimuthal projections.

Remarks This projection was presented by H. Wiechel in 1879.

Limitations Data greater than 65º distant from the center point is trimmed.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('wiechel', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-138

Wiechel Projection

12-139

Winkel I Projection

Classification Pseudocylindrical

Syntax winkel

Graticule Central Meridian: Straight line at least half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves concave toward
the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the
central meridian.

Poles: Lines at least half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features This projection is an arimethical average of the x and y coordinates of
the Sinusoidal and Equidistant Cylindrical projections. Scale is true
along the standard parallels and is constant along any parallel and
between any pair of parallels equidistant from the Equator. There is
no point free of distortion. This projection is not equal-area, conformal,
or equidistant.

Parallels For this projection, only one standard parallel is specified. The other
standard parallel is the same latitude with the opposite sign. Any
latitude may be chosen; the default is set to 50º28’.

Remarks This projection was developed by Oswald Winkel in 1914. Its limiting
form is the Eckert V when a standard parallel of 0º is chosen.

Limitations This projection is available only for the sphere.

Example landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('winkel', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

12-140

Winkel I Projection

12-141

Winkel I Projection

12-142

Glossary

Glossary

This glossary of geographical terms is drawn extensively from “An Album of
Map Projections”, U.S. Geological Survey Professional Paper 1453, by John P.
Snyder and Philip M. Voxland.

Because the purpose of this glossary is to assist in understanding and using
Mapping Toolbox features, it includes some terms specific to the toolbox, and
gives some other terms shades of meaning beyond their general definitions.

Antipodes
Two points on opposite sides of a planet.

Arc-second
1/3600th of a degree (1 second) of latitude or longitude.

Aspect
The conceptual placement of a projection system in relation to the
Earth’s axis (direct, normal, polar, equatorial, oblique, and so on).

Attribute
In vector geodata, a quantitative or qualitative descriptor of a spatial
entity. An attribute can describe a real-world quality (such as
population or land area), or a graphic quality (such as patch color or
line weight). Attributes are frequently coded as numbers or strings in
character-coded or binary tabular data files, with one or more attribute
per map feature.

Attribute spec
(Attribute specification) A cell array structure that specifies attributes
of geodata to be included in a KML file and defines label strings and
format strings for each attribute. Used with kmlwrite.

Authalic projection
See Equal-area projection.

Axes
See Map axes.

Glossary-1

Glossary

Azimuth
The angle a line makes with a meridian, taken clockwise from north.

Azimuthal projection
A projection on which the azimuth or direction from a given central
point to any other point is shown correctly. When a pole is the central
point, all meridians are spaced at their true angles and are straight
radii of concentric circles that represent the parallels. Also called a
zenithal projection.

Bathymetry
The measurement of water depths of oceans, seas, lakes, and other
bodies of water.

Bowditch, Nathaniel
A late 18th/early 19th century mathematician, astronomer, and sailor
who “wrote the book” on navigation. John Hamilton Moore’s The
Practical Navigator was the leading navigational text when Bowditch
first went out to sea, and had been for many years. Early in his first
voyage, however, Bowditch began noticing errors in Moore’s book,
which he recorded and later used in preparing an American edition
of Moore’s work. The revisions were to such an extent that Bowditch
was named the principal author, and the title was changed to The New
American Practical Navigator, published in 1802. In 1868, the U.S.
Navy bought the copyright to the book, which is still commonly referred
to as “Bowditch” and considered the “bible” of navigation.

Buffer zone
The locus of points that lie within a specified distance from a map
feature.

Cartography
The art or practice of making charts or maps. See Map.

Categorical geodata
Geospatial data in which raster pixel values (or vector data attributes)
are categorical indices, usually coded as integers. The meanings of the
categories are usually stored in a separate table. Examples are geocodes,
land use categories, and indexed color images. See Numerical geodata.

Glossary-2

Glossary

Central meridian
The meridian passing through the center of a projection, often a straight
line about which the projection is symmetrical.

Central projection
A projection in which the Earth is projected geometrically from the
center of the Earth onto a plane or other surface. The Gnomonic and
Central Cylindrical projections are examples.

Choropleth
A map portraying regions of homogeneous classified attribute values,
changing abruptly at region boundaries, and colored or shaded
according to their attribute values. Thematic political maps are usually
choropleth maps.

Complex curves
Curves that are not elementary forms such as circles, ellipses,
hyperbolas, parabolas, and sine curves, such as rivers, coastlines, and
administrative boundaries.

Composite projection
A projection formed by connecting two or more projections along
common lines such as parallels of latitude, necessary adjustments being
made to achieve fit. The Goode Homolosine projection is an example.

Conformal projection
A projection on which all angles at each point are preserved, except at a
finite number of singular points (e.g., the poles in a Mercator projection).
Also called an orthomorphic projection.

Conic projection
A projection resulting from the conceptual projection of the Earth onto
a tangent or secant cone, which is then cut lengthwise and laid flat.
When the axis of the cone coincides with the polar axis of the Earth,
all meridians are straight equidistant radii of concentric circular arcs
representing the parallels, but the meridians are spaced at less than
their true angles. Mathematically, the projection is often only partially
geometric.

Glossary-3

Glossary

Constant scale
A linear scale that remains the same along a particular line on a map,
although that scale may not be the same as the stated or nominal scale
of the map.

Contour
All points that are at the same height above or below a reference datum;
generally applied to continuous, single-valued surfaces only, such as
elevation, temperature, or magnetic field strength.

Conventional aspect
See Normal aspect.

Correct scale
A linear scale having exactly the same value as the stated or nominal
scale of the map, or a scale factor of 1.0. Also called true scale.

Cylindrical projection
A projection resulting from the conceptual projection of the Earth onto a
tangent or secant cylinder, which is then cut lengthwise and laid flat.
When the axis of the cylinder coincides with the axis of the Earth, the
meridians are straight, parallel, and equidistant, while the parallels
of latitude are straight, parallel, and perpendicular to the meridians.
Mathematically, the projection is often only partially geometric.

Data grid
A raster data set consisting of an array of values posted or sampled
at specific geographic points. Mapping Toolbox data grids can be
implicit (regular) or explicit (irregular, or geolocated), depending on the
uniformity of the grid. See Regular data grid, Geolocated data grid.

Datum (vertical)
A base reference level for establishing the vertical dimension of elevation
for the earth’s surface. A datum defines sea level and incorporates an
ellipsoid; thus one can reference a coordinate system to a datum or to a
specified ellipsoid, but not both at the same time.

Datum (horizontal)
A base measuring point (“0.0 point”) used as the origin of rectangular
coordinate systems for mapping or for maintaining excavation

Glossary-4

Glossary

provenience. Two examples are the North American Datum of
1927 (NAD27) and the North American Datum of 1983 (NAD83).
Earth-centered coordinate systems, such as WGS84, combine horizontal
and vertical datums.

Dead reckoning
From “deduced reckoning,” the estimation of geographic position based
on course, speed, and time.

DEM (Digital Elevation Map/Model)
Elevation data in the form of a data grid, generally a regular (implicit)
one. DEM also refers to the five primary types of digital elevation
models produced by the U.S. Geological Survey; Mapping Toolbox
functions can read 30-meter and 10-meter DEMs as well as 3-second
DEMs.

Departure
The arc length distance along a parallel of a point from a given meridian.

Developable surface
A simple geometric form capable of being flattened without stretching.
Many map projections can be grouped by a particular developable
surface: cylinder, cone, or plane.

Direct aspect
See Normal aspect.

Display Structure
A Mapping Toolbox data structure for mapped objects dating from
Version 1 of the product. The structures can contain line, patch, text,
regular data grid, geolocated data grid, and light objects; vector data
always has coordinates in latitude and longitude. In Version 2 of
the toolbox, display structures were superseded by geostructs and
mapstructs. See Geographic data structure on page Glossary-9. Most
vector display structures can be converted to geographic data structures.

Distortion
A variation of the area or linear scale on a map from that indicated by
the stated map scale, or the variation of a shape or angle on a map from
the corresponding shape or angle on the Earth.

Glossary-5

Glossary

DM
Degrees-minutes angle notation of the form ddd° mm’. There are 60
seconds in a minute, and 60 minutes in a degree. In DM notation,
degrees are always integer, but minutes can be fractional. Certain
Mapping Toolbox functions represent DM angles as column vectors,
[degrees minutes].

DMS
Degrees-minutes-seconds angle notation of the form ddd° mm’ ss’’.
There are 60 seconds in a minute, and 60 minutes in a degree. In DMS
notation, degrees and minutes are always integer, but seconds can be
fractional. Certain Mapping Toolbox functions represent DMS angles as
column vectors, [degrees minutes seconds].

DTED
Digital Terrain Elevation Data; a raster data format used by various
terrain data products, based on specifications originating in the United
States Department of Defense. DTED® files sample terrain elevation
in a geographic grid at specific “levels” of spatial resolution; sampling
intervals are approximately one kilometer for Level 0, 100 meters for
Level 1, 30 meters for Level 2, and so on. High level DTED files are not
generally available to the public. Mapping Toolbox software imports all
levels of DTED data.

Easting
The distance of a point eastward from the origin in the units of the
coordinate system for the defined projection. Paired with Northings.

Ellipsoid
When used to represent the Earth, a solid geometric figure formed by
rotating an ellipse about its minor (shorter) axis. Also called spheroid.

Ellipsoid vector
A vector describing a specific ellipsoid model. The ellipsoid vector has
the form

ellipsvec = [semimajor-axis eccentricity]

Glossary-6

Glossary

Ellipsoidal height
Elevation of a point above a reference ellipsoid, as measured along
a normal to the ellipsoid.

Equal-area projection
A projection on which the areas of all regions are shown in the same
proportion to their true areas. Shapes may be greatly distorted. Also
called an equivalent or authalic projection.

Equator
The great circle straddling a planet at a latitude of 0°, perpendicular to
its polar axis and midway along it, dividing the northern and southern
hemispheres.

Equatorial aspect
An aspect of an azimuthal projection on which the center of projection
or origin is some point along the Equator. For cylindrical and
pseudocylindrical projections, this aspect is usually called conventional,
direct, normal, or regular rather than equatorial.

Equidistant projection
A projection that maintains constant scale along all great circles from
one or two points. When the projection is centered on a pole, the
parallels are spaced in proportion to their true distances along each
meridian.

Equireal projection
See Equal-area projection.

Equivalent projection
See Equal-area projection.

False easting
The value of the easting assigned to the projection origin. Easting
values increase to the east.

False northing
The value of the northing assigned to the projection origin. Northing
values increase to the north.

Glossary-7

Glossary

Flat-polar projection
A cylindrical projection on which, in normal aspect, the pole is shown
as a line rather than as a point. For example, the Miller projection
is flat-polar.

Frame
See Map frame.

Free of distortion
Having no distortion of shape, area, or linear scale. On a flat map, this
condition can exist only at certain points or along certain lines.

Geodesic
A minimum-distance curve on a curved surface, independent of the
choice of a coordinate system. On a sphere a geodesic is equivalent
to a great circle arc.

Geolocated data grid
A data grid defined with separate latitude, longitude, and value
matrices, allowing irregular sampling, nonrectangular shapes,
and noncardinal orientations. Satellite imagery swaths are often
represented as geolocated data grids. See Data grid, Regular data grid.

Geodata
Geospatial data. See Geospatial.

Geoid
The figure of the earth less its topography, defined as an equipotential
surface with respect to gravity, more or less corresponding to mean sea
level. It is approximately an oblate ellipsoid, but not exactly so because
local variations in gravity create minor hills and dales. Empirically
determined geoids are used to define datums and to compute orbital
mechanics.

Geometric projection
See Perspective projection.

Glossary-8

Glossary

Geographic coordinates
Spherical 2-D coordinate tuples (latitudes, longitudes) that specify point
locations for unprojected geodata. The analogous term for geodata
projected to a rectangular coordinate system is map coordinates.

Geographic data structure
A Mapping Toolbox data structure for vector data comprised of a
MATLAB structure array with one element per vector geographic
feature. It includes a mandatory Geometry field, at least two coordinate
array fields. The field names are X and Y (for mapstructs), or Lat and
Lon (for geostructs), and optional attribute fields.

Georeferencing
Identifying objects and locations by name, identifier, or coordinates to
describe where they are located on the Earth’s surface.

Geospatial
Spatial data, concepts, and techniques that specifically refer to
geographic space or phenomena, and not just to arbitrary coordinate
systems or abstract space frames.

Geostruct
A Mapping Toolbox geographic data structure for vector geodata with
coordinates in latitude and longitude. See Geographic data structure
on page Glossary-9.

GeoTIFF
An extension of the TIFF image file format with additional tags
containing parameters for image georeferencing and projected map
coordinate system definition.

GIS (Geographic Information System)
A system, usually computer based, for the input, storage, retrieval,
analysis, and display of interpreted geographic data.

Globular projection
Generally, a nonazimuthal projection developed before 1700 on which
a hemisphere is enclosed in a circle, and meridians and parallels are
simple curves or straight lines.

Glossary-9

Glossary

Graticule
A network of lines representing a subset of the Earth’s parallels and
meridians (or plane coordinates) used as a reference grid on globes and
maps. Generally synonymous with map grid, except that many map
grids are rulings at regular intervals in projected coordinates. See Map
grid, National grid (U.S.), and National grid (U.K.). The vertices of
the graticule grid are precisely projected, and the map data contained
in any grid cell is warped to fit the resulting quadrilateral. A finer
graticule grid results in a higher projection fidelity at the expense of
greater computational requirements.

Great circle
Any circle on the surface of a sphere, especially when the sphere
represents the Earth, formed by the intersection of the surface with a
plane passing through the center of the sphere. It is the shortest path
between any two points along the circle and therefore important for
navigation. All meridians and the Equator are great circles on the
Earth taken as a sphere.

Grid
See Map grid, Data grid.

Homalographic/homolographic projection
See Equal-area projection.

Hydrography
The science of measurement, description, and mapping of the surface
waters of the Earth, especially with reference to their use in navigation.
The term also refers to those parts of a map collectively that represent
surface waters and drainage.

Hydrology
The scientific study of the waters of the Earth, especially with relation
to the effects of precipitation and evaporation upon the occurrence and
character of ground water.

Hypsographic tints
A graphic means of representing terrain or other scalar attributes using
a sequence of colors or tints indexed to elevation.

Glossary-10

Glossary

Hypsography
The scientific study of the Earth’s topological configuration above sea
level, especially the measurement and mapping of land elevation.

Index map
A small-scale map used to help locate a map containing a region or
feature of interest in a tiled geospatial database, map series, plat book,
or atlas.

Indicatrix
A circle or ellipse useful in illustrating the distortions of a given map
projection. Indicatrices are constructed by projecting infinitesimally
small circles on the Earth onto a map and giving them visible
dimensions. Their axes lie in the directions of and are proportional to
the maximum and minimum scales at their point locations. Often called
a Tissot indicatrix after the originator of the concept. Mapping Toolbox
Tissot indicatrices can be displayed using the tissot command, and
indicatrices for all supported projections are provided. See Chapter 12,
“Map Projections — Alphabetical List” in Mapping Toolbox reference
documentation.

Interrupted projection
A projection designed to reduce peripheral distortion by making use of
separate sections joined at certain points or along certain lines, usually
the Equator in the normal aspect, and split along lines that are usually
meridians. There is normally a central meridian for each section. No
Mapping Toolbox projections are of this type, but the user can separate
data into sections and project these independently to achieve this effect.

Keyhole markup language (KML)
A file format and dialect of XML used to georeference geographic
locations and describe their attributes and relations, including
hyperlinks, for display in earth browsers.

Large-scale mapping
Mapping at a scale larger than about 1:75,000, although this limit is
somewhat flexible. Includes cadastral, utility, and some topographic
maps.

Glossary-11

Glossary

Latitude (astronomical)
The complement of the elevation angle of the celestial North Pole, which
depends on normal to the Earth’s equipotential surface (geoid) at a
given point (positive if the point is north of Equator, negative if it is
south). It can be thought of as the angle that a plumb line makes with
the equatorial plane.

Latitude (auxiliary)
Intermediate forms of latitude that are mathematically constructed
(normally by transferring latitudes first from an ellipsoid to a sphere,
and then to a plane) in order to achieve desired map projection
properties. Types include conformal (for constructing conformal
maps), authalic (for constructing equal-area maps), and rectifying (for
constructing equidistant maps).

Latitude (geocentric)
The angle at which a line connecting the surface of a sphere or reference
ellipsoid to its center intersects the equatorial plane (positive if the
point is north of Equator, negative if it is south). One of the two common
geographic coordinates of a point on the Earth.

Latitude (geodetic)
The angle made by a perpendicular to a given point on the surface
of a sphere or ellipsoid representing the Earth and the plane of the
Equator (positive if the point is north of Equator, negative if it is south).
Also called geographic latitude. One of the two common geographic
coordinates of a point on the Earth.

Latitude of opposite sign
See Parallel of opposite sign.

Legs
Line segments connecting waypoints.

Legend
See Map legend.

Glossary-12

Glossary

Limiting forms
The form taken by a system of projection when the parameters of the
formulas defining that projection are allowed to reach limits that cause
it to be identical with another separately defined projection.

Logical data grid
A binary data grid consisting entirely of 1s and 0s. An example of a
logical data grid can be created with the topo map by performing a
logical test for positive elevations (topo>0). Each entry in the data grid
contains a 1 if it is above sea level, or a 0 if it is at or below sea level.

Longitude
The angle made by the plane of a meridian passing through a given
point on the Earth’s surface and the plane of the (prime) meridian
passing through Greenwich, England, east or west to 180 (positive if the
point is east, negative if it is west). One of the two common geographic
coordinates of a point on the Earth. Paired with Latitude.

Loxodrome
See Rhumb line.

Map
A diagrammatic or pictorial representation of a planet’s surface or part
of it, showing the geographical distributions, positions, etc., of natural
or artificial features such as roads, towns, relief, land cover, rainfall,
populations, etc. Maps represent geospatial data visually.

Map axes
A Handle Graphics axes object augmented with additional properties,
including a projection type, projection parameters, map latitude and
longitude limits and so forth. Many Mapping Toolbox display functions
require that a map axes first be defined. Others create a map axes if
necessary (e.g., worldmap and usamap) or assume that your coordinate
data are in a projected map coordinate system (mapshow and mapview).

Map coordinates
Orthogonal planar 2-D coordinate tuples that specify point locations
for projected geodata. The analogous term for unprojected geodata
is geographic coordinates. Also called grid coordinates and plane
coordinates.

Glossary-13

Glossary

Map frame
A projected rectangle or quadrangle enclosing a geographic data
displayed on a Mapping Toolbox map axes.

Map grid
A symbolized network of lines, or graticule, representing parallels and
meridians or plane coordinates. Plane coordinate grids are almost
always rectangular with uniform spacing. Azimuthal map grids are
organized as polar coordinates. See Graticule.

Map layer
A vector or raster geographic data set read into the Map Viewer, for
example, roads, rivers, municipal boundaries, topographic grids, or
orthophoto images. Map layers are “stacked” from top to bottom, and
can be reordered and hidden by the user.

Map legend
A key to symbolism used on a map, usually containing swatches
of symbols with descriptions, and can include notes on projection,
provenance, scale, units of distance, etc.

Mapstruct
A Mapping Toolbox geographic data structure for vector geodata with
coordinates in projected (x,y) coordinates. See Geographic data
structure on page Glossary-9.

Matrix map
See Data grid.

Meridian
A reference line on the Earth’s surface formed by the intersection of the
surface with a plane passing through both poles and some third point
on the surface. This line is identified by its longitude. When the Earth
is regarded as a sphere, this line is half a great circle; on the Earth
regarded as an ellipsoid, it is half an ellipse.

Minimum-error projection
A projection having the least possible total error of any projection
in the designated classification, according to a given mathematical
criterion. Usually, this criterion calls for the minimum sum of squares

Glossary-14

Glossary

of deviations of linear scale from true scale throughout the map (“least
squares”).

National grid (U.K.)
A metric grid based on the Transverse Mercator Projection developed
by Ordnance Survey in 1936 for use in Great Britain. Sometimes
abbreviated “OSGB36,” it is the de facto standard projection for display
of UK based mapping.

National grid (U.S.)
A metric grid based on the Transverse Mercator Projection, adopted
by the Federal Geographic Data Committee (FGDC) in 2001 for use
in the United States. It is an evolving standard intended to unify
georeferencing across the U.S., but is not yet as widely used as other
countries’ national grids.

Nominal scale
The stated scale at which a map projection is constructed. Scale is never
completely constant across the extent of a map, although in some maps
(especially at large scales) it can vary by minuscule amounts.

Normal aspect
A form of a projection that provides the simplest graticule and
calculations. It is the polar aspect for azimuthal projections, the
aspect having a straight Equator for cylindrical and pseudocylindrical
projections, and the aspect showing straight meridians for conic
projections. Also called conventional, direct, or regular aspect.

Northing
The distance of a point northward from the origin, in the units of the
coordinate system for the defined projection. Paired with Eastings.

Numerical geodata
Geospatial data in which raster pixel values (or vector data attributes)
are cardinal, ratio, or ordinal numeric measurements or computed
values. For example, the topo data set contains numerical geodata.
Each value in its data grid is an average elevation in meters for the
geographic area covered by that cell. See Categorical geodata.

Glossary-15

Glossary

Oblique aspect
An aspect of a projection on which the axis of the Earth is rotated so it
is neither aligned with nor perpendicular to the conceptual axis of the
map projection.

Orthoapsidal projection
A projection on which the surface of the Earth taken as a sphere is
transformed onto a solid other than the sphere and then projected
orthographically and obliquely onto a plane for the map.

Orthographic projection
A specific azimuthal projection or a type of projection in which the
Earth is projected geometrically onto a surface by means of parallel
projection lines.

Orthometric height
Elevation above a datum defined by a geoid representing mean sea level.

Orthomorphic projection
See Conformal projection.

Parallel
A small circle on the surface of the Earth, formed by the intersection of
the surface of the reference sphere or ellipsoid with a plane parallel to
the plane of the Equator. This line is identified by its latitude, which
can be defined in several ways. The Equator (a great circle) is usually
also treated as a parallel. See entries for Latitude.

Parallel of opposite sign
A parallel that is equally distant from but on the opposite side of the
Equator. For example, for lat 30°N (or +30°), the parallel of opposite
sign is lat 30° S (or -30°). Also called latitude of opposite sign.

Perspective projection
A projection produced by projecting straight lines radiating from a
selected point (or from infinity) through points on the surface of a sphere
or ellipsoid and then onto a tangent or secant plane. Other perspective
maps are projected onto a tangent or secant cylinder or cone by using
straight lines passing through a single axis of the sphere or ellipsoid.
Also called geometric projection.

Glossary-16

Glossary

Planar projection
A projection resulting from the conceptual projection of the Earth onto
a tangent or secant plane. Usually, a planar projection is the same as
an azimuthal projection. Mathematically, the projection is often only
partially geometric.

Planimetric map
A map representing only the horizontal positions of features (without
their elevations).

Polar aspect
An aspect of a projection, especially an azimuthal one, on which the
Earth is viewed from directly above a pole. This aspect is called
transverse for cylindrical or pseudocylindrical projections.

Pole
An extremity of a planet’s axis of rotation. The North Pole is a singular
point at 90°N for which longitude is ambiguous. The South Pole has the
same characteristics and is located at 90°S.

Polyconic projection
A specific projection or member of a class of projections that are
constructed like conic projections but with different cones for each
parallel. In the normal aspect, all the parallels of latitude are
nonconcentric circular arcs, except for a straight Equator, and the
centers of these circles lie along a central axis.

Projected coordinate system
A coordinate system defined for a particular map projection and
associated parameters, which normally is planar with well-defined
coordinate origin, handedness, nominal scale, and units of distance.
While map scale can vary at different coordinate locations, a linear
projected coordinate system has constant units of distance.

Projection
A systematic representation of a curved 3-D surface such as the Earth
onto a flat 2-D plane. Each map projection has specific properties that
make it useful for specific purposes. For a list of Mapping Toolbox map
projections, type maps.

Glossary-17

Glossary

Projection parameters
The values of constants as applied to a map projection for a specific
map; examples are the values of the scale, the latitudes of the standard
parallels, and the central meridian. The required parameters vary with
the projection.

Pseudoconic projection
A projection that, in the normal aspect, has concentric circular arcs
for parallels and on which the meridians are equally spaced along the
parallels, like those on a conic projection, but on which meridians are
curved.

Pseudocylindric-al projection
A projection that, in the normal aspect, has straight parallel lines for
parallels and on which the meridians are (usually) equally spaced
along parallels, as they are on a cylindrical projection, but on which
the meridians are curved.

Quadrangle
A region bounded by parallels north and south, and meridians east
and west.

Raster geodata
A georeferenced array or grid of values corresponding to specific
geographic points, usually regularly and rectangularly sampled in
either geographic or map space. Values can be continuous or categorical.
In the case of georeferenced multiband images, raster geodata can take
the form of 3- and higher dimensional arrays.

Reckoning
The determination of geographic position by calculation.

Referencing matrix
A 3-by-2 matrix defining the scaling, orientation, and placement
of raster map data on the globe or in planar map coordinates. The
matrix specifies an affine transformation that ties (geolocates) the
row and column subscripts of an image or regular data grid to 2-D
map coordinates or to geographic coordinates (longitude and geodetic
latitude). See Referencing vector.

Glossary-18

Glossary

Referencing vector
A three-component vector defining the geographic placement and
unit cell size for raster map data. A referencing vector has the form
[cells/degree north-latitude west-longitude], with latitude and
longitude limits specified in degrees.

A referencing vector specifies an affine transformation with rows and
columns aligned to latitude and longitude, respectively, and the same
data spacing in both latitude and longitude. As such, it is more specific
than a referencing matrix. Note that a referencing vector can always
be transformed to a referencing matrix, but only certain referencing
matrices can be transformed to referencing vectors. See Referencing
matrix.

Regional map
A small-scale map of an area covering at least 5 or 10 degrees of latitude
and longitude but less than a hemisphere.

Regular aspect
See Normal aspect.

Regular data grid
A data grid with equally spaced grid points in either latitude-longitude
or map coordinates, defined with a referencing matrix or vector, and
limited to a rectangular shape and cardinal orientation. See Data grid,
Geolocated data grid, Referencing matrix.

Retroazimuthal projection
A projection on which the direction or azimuth from every point on the
map to a given central point is shown correctly with respect to a vertical
line parallel to the central meridian. The reverse of an azimuthal
projection.

Rhumb line
A complex curve (a spherical helix) on a planet’s surface that crosses
every meridian at the same oblique angle; a navigator can proceed
between any two points along a rhumb line by maintaining a constant
heading. A rhumb line is a straight line on the Mercator projection. Also
called a loxodrome.

Glossary-19

Glossary

Scale
The ratio of the distance on a map or globe to the corresponding distance
on the Earth; usually stated in the form 1:5,000,000, for example.
A given region will appear smaller on a small-scale map than on a
large-scale map.

Scale factor
The ratio of the scale at a particular location and direction on a map to
the nominal scale of the map. At a standard parallel, or other standard
line, the scale factor is 1.0.

Secant cone, cylinder, or plane
A secant cone or cylinder intersects the sphere or ellipsoid along two
separate lines; these lines are parallels of latitude if the axes of the
geometric figures coincide. A secant plane intersects the sphere or
ellipsoid along a line that is a parallel of latitude if the plane is at right
angles to the axis.

Selector
A cell array in which the first element is a predicate function and the
remaining elements list the names of attributes in a shapefile. Function
shaperead has an option to screen out any feature in the shapefile for
which a predicate returns false when applied to the subset of attributes
corresponding to the list in the selector.

Shaded relief
Shading added to a map or image that makes it appear to have
three-dimensional aspects. This type of enhancement is commonly done
to satellite images and thematic maps utilizing digital topographic data
to provide the appearance of terrain relief.

Shapefile
A widely used file format for vector geodata designed by Environmental
Systems Research Institute. Shapefiles encode coordinates for points,
multipoints, lines (polylines), or polygons along with tabular attributes.

Singular points
Certain points on most but not all conformal projections at which
conformality fails, such as the poles on the normal aspect of the
Mercator projection.

Glossary-20

Glossary

Skew-oblique aspect
An aspect of a projection on which the axis of the Earth is rotated, so it
is neither aligned with nor perpendicular to the conceptual axis of the
map projection, and tilted, so the poles are at an angle to the conceptual
axis of the map projection.

Small circle
A circle on the surface of a sphere, formed by the intersection with a
plane. Parallels of latitude are small circles on the Earth taken as
a sphere. Mapping Toolbox great circles, including the Equator and
all meridians, are treated as special, limiting cases of small circles.
Mapping Toolbox functions generalize the concept of small circle with
computations for two other types of curve: the locus of points on an
ellipsoid at a given distance (as measured along a geodesic) from a
central point, or the locus of points on a sphere or ellipsoid at a given
distance from a central point, as measured along a rhumb line.

Small-scale mapping
Mapping at a scale smaller than about 1:1,000,000, although the
limiting scale sometimes has been made as large as 1:250,000.

Spatial Data Transfer Standard (SDTS)
A self-documenting geospatial file formatting standard adopted by the
U.S. government and others. SDTS can encode locations, attributes,
topological relationships, data quality, and other metadata. Note that
Mapping Toolbox software can read the SDTS Raster Profile, but does
not currently support SDTS vector data.

Spheroid
See Ellipsoid.

Standard parallel
In the normal aspect of a projection, a parallel of latitude along which
the scale is as stated for that map. There are one or two standard
parallels on most cylindrical and conic map projections and one on many
polar stereographic projections.

State Plane
A set of commensurate coordinate systems commonly used for utility
and surveying applications in the lower 48 United States. Each

Glossary-21

Glossary

state contains one or more zones. Coordinates for zones elongated
north-to-south are based on Transverse Mercator projections, while
zones elongated east-to-west use Lambert Conformal Conic.

Stereographic projection
A specific azimuthal projection or type of projection in which the Earth
is projected geometrically onto a surface from a fixed (or moving) point
on the opposite face of the Earth.

Symbolization
In cartography, a mapping between geospatial objects or numerical
or categorical values and cartographic symbols. The choice of graphic
symbols, their size, density, shape, contrast, color, and pattern are
principal aspects of symbolization.

Symbolspec
(Symbol specification) A cell array structure that defines symbolism
characteristics for points, lines, and polygons with respect to attributes
and their values, or as a default symbolization regardless of attributes.

Tangent cone or cylinder
A cone or cylinder that just touches the sphere or ellipsoid along a
single line. This line is a parallel of latitude if the axes of the geometric
figures coincide.

Thematic map
A map designed to portray primarily a particular subject, such as
population, railroads, or croplands.

Tissot indicatrix
See Indicatrix.

Topographic map
A map that usually represents the vertical positions or elevations of
features as well as their horizontal positions.

Transformed latitudes, longitudes, or poles
Graticule of meridians and parallels on a projection after the Earth has
been turned with respect to the projection so that the Earth’s axis no

Glossary-22

Glossary

longer coincides with the conceptual axis of the projection. Used for
oblique and transverse aspects of many projections.

Transverse aspect
An aspect of a map projection on which the axis of the Earth is rotated
so that it is at right angles to the conceptual axis of the map projection.
For azimuthal projections, this aspect is usually called equatorial rather
than transverse.

True scale
See Correct scale.

Vector data set
Data representing geospatial objects as sequences of geographic
or projected coordinate points that are implicitly connected if they
represent linear or areal shapes. In Mapping Toolbox and other
software, such geodata is often represented by two vectors, one with
latitudes, another with longitudes. Objects can be segmented by
inserting NaNs at the same locations in both vectors. Such pairs of
coordinate vectors can also be represented as the Lat and Lon or X and Y
field values in a geographic data structure array.

Viewshed
The portion of a surface that is visible from a given point on or above it;
derived from the concept of a watershed.

Waypoints
Points through which a trip, track, or transit passes, usually
corresponding to course or speed changes.

WGS 72 (World Geodetic System 1972)
An Earth-centered datum, used as a definition of DMA (now NGA)
DEMs. The WGS 72 datum was the result of an extensive effort
extending over approximately three years to collect selected satellite,
surface gravity, and astrogeodetic data available throughout 1972. This
data was combined using a unified WGS solution (a large-scale least
squares adjustment).

Glossary-23

Glossary

WGS 84 (World Geodetic System 1984)
The WGS 84 was developed as a replacement for the WGS 72 by the
military mapping community as a result of new and more accurate
instrumentation and a more comprehensive control network of ground
stations. The newly developed satellite radar altimeter was used to
deduce geoid heights from oceanic regions between 70° north and south
latitude. Geoid heights were also deduced from ground-based Doppler
and ground-based laser satellite-tracking data, as well as surface
gravity data. The ellipsoid associated with WGS 84 is GRS 80.

World file
A small text file used to georeference different raster image formats,
developed to incorporate imagery into ESRI’s ArcView software.

Zenithal projection
See Azimuthal projection.

Glossary-24

A

Bibliography

1 Snyder, J.P., Map Projections — A Working Manual, U.S. Geological
Survey Professional Paper 1395, Washington, D.C., 1987.

2 Maling, D.H., Coordinate Systems and Map Projections, 2nd Edition,
Pergamon Press, New York, NY, 1992.

3 Snyder, J.P., and Voxland, P.M., An Album of Map Projections, U.S.
Geological Survey Professional Paper 1453, Washington, D.C., 1994.

4 Snyder, J.P., Flattening the Earth — 2000 Years of Map Projections,
University of Chicago Press, Chicago, IL, 1993.

5 U.S. National Geospatial Intelligence Agency, “Military Specification:
Digital Chart of the World (DCW)”, MIL-D-89009, 13 April 1992.

A Bibliography

A-2

B

Examples

Use this list to find examples in the documentation.

B Examples

Your First Maps
“See the World” on page 1-4
“Tour Boston with the Map Viewer” on page 1-9

Understanding Vector Geodata
“A Look at Vector Data” on page 2-4
“Displaying a Point” on page 2-13
“Displaying a Line” on page 2-14
“Displaying a Polygon” on page 2-16
“Examining a Geographic Data Structure” on page 2-24
“Example — Making Point and Line Geostructs” on page 2-26
“Selecting Data to Read with the shaperead Function” on page 2-32

Understanding Raster Geodata
“A Look at Raster Data” on page 2-8
“Constructing a Global Data Grid” on page 2-40
“Computing Map Limits for Regular Data Grids” on page 2-41
“Geographic Interpretation of Grid Cells” on page 2-43
“Precomputing the Size of a Data Grid” on page 2-45

Combining Vector and Raster Geodata
“Viewing Raster and Vector Data on the Same Map” on page 2-10

Geolocated Data Grids
“Geolocated Grid Format” on page 2-46
“Transforming Regular to Geolocated Grids” on page 2-52

B-2

Exporting Vector Geodata

“Transforming Geolocated to Regular Grids” on page 2-53

Exporting Vector Geodata
“Generating a Single Placemark” on page 2-60
“ Placemarks from Addresses” on page 2-62
“Exporting Point Geostructs to Placemarks” on page 2-64

Understanding Geospatial Geometry
“Mapping the Geoid” on page 3-3
“Computing Conversion Factors” on page 3-17
“An Annotated Map Illustrating Small Circles” on page 3-36

Creating and Viewing Maps
“Using worldmap” on page 4-5
“Using usamap” on page 4-7
“Accessing and Manipulating Map Axes Properties” on page 4-14
“Using the Map Limit Properties” on page 4-19
“Switching Between Projections” on page 4-34
“Moving Meridian and Parallel Labels” on page 4-35
“Resetting Frame Limits” on page 4-37
“Changing Map Projections when Using geoshow” on page 4-42
“Placing Geographic and Nongeographic Objects in a Map Axes” on page
4-45
“The Map Frame” on page 4-48
“Displaying Vector Data as Points and Lines” on page 4-60
“Displaying Vector Maps as Lines or Patches” on page 4-63
“Fitting Gridded Data to the Graticule” on page 4-71
“Using Raster Data to Create 3-D Displays” on page 4-74
“Picking Locations Interactively” on page 4-78
“Defining Small Circles and Tracks Interactively” on page 4-80

B-3

B Examples

“Determining and Manipulating Object Names” on page 4-84

Making Three-Dimensional Maps
“Using dteds, usgsdems, and gtopo30s to Identify DEM Files” on page 5-5
“Mapping a Single DTED File with the DTED Function” on page 5-7
“Mapping Multiple DTED Files with the DTED Function” on page 5-9
“Extracting DEM Data with demdataui” on page 5-13
“Computing Line of Sight with los2” on page 5-19
“Lighting a Terrain Map Constructed from a DTED File” on page 5-21
“Lighting a Global Terrain Map with lightm and lightmui” on page 5-24
“Creating Monochrome Shaded Relief Maps Using surflm” on page 5-27
“Coloring Shaded Relief Maps and Viewing Them in 3-D” on page 5-32
“Colored 3-D Relief Maps Illuminated with Light Objects” on page 5-34
“Draping Geoid Heights over Topography” on page 5-38
“Draping via Converting a Regular Grid to a Geolocated Data Grid” on
page 5-41
“Draping a Geolocated Grid on Regular Data Grid via Texture Mapping”
on page 5-44
“The Globe Display Compared with the Orthographic Projection” on page
5-48
“Using Opacity and Transparency in Globe Displays” on page 5-50
“Over-the-Horizon 3-D Views Using Camera Positioning Functions” on
page 5-53
“Displaying a Rotating Globe” on page 5-55

Customizing and Printing Maps
“Inset Maps” on page 6-2
“Graphic Scales” on page 6-8
“North Arrows” on page 6-14
“Choropleth Maps” on page 6-18

B-4

Using Colormaps and Colorbars

Using Colormaps and Colorbars
“Colormap for Terrain Data” on page 6-24
“Contour Colormaps” on page 6-27
“Colormaps for Political Maps” on page 6-29
“Labeling Colorbars” on page 6-33

Vector Data Manipulation
“Extracting and Joining Polygons or Line Segments” on page 7-2
“Linking Line Segments into Polygons” on page 7-4
“Interpolating Vectors to Achieve a Minimum Point Density” on page 7-6
“Interpolating Coordinates at Specific Locations” on page 7-7
“Overlaying Polygons with the polybool Function” on page 7-13
“Removing Discontinuities from a Small Circle” on page 7-17
“Generating a Buffer Around a Polygon” on page 7-20
“Trimming Vectors to Form Lines and Polygons” on page 7-22
“Using reducem to Simplify Lines” on page 7-26

Raster Data Manipulation
“Creating Data Grids from Vector Data” on page 7-31
“Using a GUI to Rasterize Polygons” on page 7-36
“Obtaining the Area Occupied by a Logical Grid Variable” on page 7-39
“Using the mapprofile Function” on page 7-41
“Computing Gradient Data from a Regular Data Grid” on page 7-44

Projections and Transformations
“Exploring Projection Aspect” on page 8-12
“Determining Projection Parameters” on page 8-19
“Visualizing Projection Distortions via Tissot Indicatrices” on page 8-27
“Visualizing Projection Distortions via Isolines” on page 8-29

B-5

B Examples

“Using distortcalc to Determine Map Projection Geometric Distortions”
on page 8-31
“Retrieving Projected Coordinates from a Figure” on page 8-37
“Using mfwdtran with a Map Projection Structure” on page 8-40
“Recovering Geodetic Coordinates with minvtran” on page 8-42
“Obtaining Angular Directions in a Projection Space” on page 8-43
“Reorienting Vector Data with rotatem” on page 8-46
“Reorienting Gridded Data with neworig” on page 8-49
“Understanding UTM Parameters” on page 8-52
“Setting UTM Parameters with a GUI” on page 8-54
“Working in UTM Without a Map Axes” on page 8-59
“Mapping Across UTM Zones” on page 8-60

Web Map Service Maps
“Basic Workflow for Creating WMS Maps” on page 9-5
“Finding Temperature Data” on page 9-9
“Refining by Text String” on page 9-11
“Refining by Geographic Limits” on page 9-12
“Updating Your Layer” on page 9-13
“Retrieving Your Map with wmsread” on page 9-16
“Setting Optional Parameters” on page 9-17
“Adding a Legend to Your Map” on page 9-19
“Retrieving Your Map with WebMapServer.getMap” on page 9-28
“Setting the Geographic Limits and Time” on page 9-34
“Manually Editing a URL” on page 9-36
“Creating a Composite Map of Multiple Layers from One Server” on page
9-39
“Combining Layers from One Server with Data from Other Sources” on
page 9-42
“Draping Topography and Ortho-Imagery Layers over a Digital Elevation
Model Layer” on page 9-44
“Creating Movie of Terra/MODIS Images” on page 9-49
“Creating an Animated GIF File” on page 9-51
“Animating Time-Lapse Radar Observations” on page 9-54
“Displaying Animation of Radar Images over GOES Backdrop” on page 9-57

B-6

Navigation

“Retrieving Elevation Data” on page 9-60
“Display a Merged Elevation and Bathymetry Layer (SRTM30 Plus)” on
page 9-63
“Saving Favorite Servers” on page 9-70
“Exploring Other Layers from a Server” on page 9-72
“Writing a KML File” on page 9-75
“Searching for Layers Outside the Database” on page 9-77
“Server No Longer Provides Full WMS Services” on page 9-79
“Problems with Geographic Limits” on page 9-82

Navigation
“A Numerical Example of Using navfix” on page 10-20
“Planning the Shortest Path” on page 10-25
“Track Laydown – Displaying Navigational Tracks” on page 10-29
“Dead Reckoning” on page 10-31

B-7

B Examples

B-8

Index

IndexA
Adams, O. S.

Craster projection 12-31
Quartic Authalic projection 12-113

Airy Minimum Error Azimuthal projection 12-20
Airy, George

Airy Minimum Error Azimuthal
projection 12-20

aitoff 12-2
Aitoff projection 12-2

and Equidistant Azimuthal projection 12-2
and Hammer projection 12-2

Aitoff, David
Aitoff projection 12-2

Albers Equal-Area Conic projection 12-4
and Behrmann Cylindrical projection 12-4

12-6
and Lambert projections 12-4 12-6

Albers Equal-Area Conic standard
projection 12-6

Albers, Heinrich Christian
Albers Equal-Area Conic projection 12-5

almanac
examples of 3-46

American Geographical Society 12-95
American Polyconic projection 12-107
American Polyconic standard projection 12-109
angle conversions

summary of 3-26
angle units

convention for navigation functions 10-12
in geospatial data 3-18

Apian, Peter 12-8
apianus 12-8
Apianus II projection 12-8
areaint

example of 7-11
areamat

using 7-39
areaquad

using 3-45
attribute spec

definition Glossary-1
attribute specification. See makeattribspec
axes2ecc

using 3-6
axesm

map frame and 4-48
map grid 4-55

axesscale
using 6-2

azimuth
defined 3-42
example of 3-42

azimuthal projection 8-8

B
Babinet projection 12-97
Balthasart Cylindrical projection 12-10

and Equal-Area Cylindrical projection 12-10
balthsrt 12-10
Bartholomew, John

Nordic projection 12-69
base projection 8-16
bearing. See azimuth
behrmann 12-12
Behrmann Cylindrical projection 12-12

and Equal-Area Cylindrical projection 12-12
Behrmann, Walter

Behrmann Cylindrical projection 12-12
Bienewitz, Peter

Apianus projction 12-8
Bolshoi Sovietskii Atlas Mira projection 12-14
bonne 12-16
Bonne projection 12-16

and Sinusoidal projection 12-16
and Werner projection 12-16

Bonne, Rigobert
Bonne projection 12-16

Index-1

Index

Bordone Oval projection 12-86
braun 12-18
Braun

Braun Perspective Cylindrical
projection 12-18

Braun Perspective Cylindrical projection 12-18
and BSAM projection 12-18
and Gall Stereographic projection 12-18

Breusing Harmonic Mean projection 12-20
and Stereographic projection 12-20

Breusing, F. A. Arthur
Breusing projection 12-20

bries 12-22
Briesemeister projection 12-22

and Hammer projection 12-22
Briesemeister, William

Briesemeister projection 12-22
bsam 12-14
BSAM projection 12-14

and Braun Perspective Cylindrical
projection 12-14

buffer zone
defined 7-19

bufferm
example of 7-20

C
cassini 12-24
Cassini Cylindrical projection 12-24

and Plate Carrée projection 12-24
Cassini Cylindrical standard projection 12-26

and Plate Carrée projection 12-26
Cassini de Thury, César François

Plate Carrée projection 12-24
Cassini projection 12-105
cassinistd 12-26
ccylin 12-28
Central Cylindrical projection 12-28

and Mercator projection 12-28

and Wetch projection 12-28
Central projection 12-65
Ch’ien Lo-Chih 12-93
choropleth maps 6-18
circles. See great circles. See small circles
coast MAT-file 2-5
collig 12-30
Collignon projection 12-30
Collignon, \x83 douard

Collignon projection 12-30
colorbar 6-27

labeled 6-33
colorbars

nominal 6-34
colormaps

annotating 6-33
digital elevation maps 6-24
political data 6-29
surface contour maps 6-27

cometm
description 6-21

conic projections
developed 8-7
equidistant standard formulation 12-51
spherical equidistant 12-49

Conical Orthomorphic projection 12-79
standard formulation 12-81

contourcmap
example 6-27

conventions
longitude ranges 3-12

coordinate reference system codes 9-16
coordinate transformations 8-45

raster data 8-49
vector data 8-46

Cossin, Jean
Sinusoidal projection 12-117

craster 12-31
Craster Parabolic projection 12-31
Craster, John Evelyn Edmund

Index-2

Index

Craster projection 12-31
cylindrical projections

developed 8-5

D
data grids 2-7

coloring 6-24
defined 2-7
displaying 4-70
gradientdata grids

slopedata grids:aspectdigital elevation
maps:gradientdigital elevation
maps:slopedigital elevation
maps:aspect 7-43

graticules 4-71
logical maps 7-39
See also geolocated data grids; regular data
grids

data reduction
vector geodata 7-25

dateline
cutting map at 7-17

de l’Isle, Nicolas
Equidistant Conic projection 12-49 12-52

dead reckoning
calculating positions 10-33
example 10-31
rules of 10-33

Deetz, Charles H.
Craster projection 12-31

deg2km
example 3-41

deg2nm
example 3-25

degrees-minutes-seconds
representing 3-20

demcmap
example 6-24

demdataui

example 5-13
DEMs. See digital elevation maps
departure 10-5
digital elevation maps 6-24

colormap for 6-24
description 2-7
line of sight in 5-19
reading data interactively 5-13
texture mapping color data onto 5-38

display structure 2-31
distance

example 3-41
distance conversions

summary of 3-26
distance units

convention for navigation functions 10-12
converting between 3-16

distances on sphere
as angles 3-23

DM and DMS notations 3-20
Douglas-Peucker algorithm 7-25
dreckon

in dead reckoning 10-33
drift correction 10-36
driftcorr

example 10-37
driftvel

example 10-38

E
Earth

default geoid 3-9
ellipsoid models 3-9

Eckert I projection 12-33
Eckert II projection 12-35
Eckert III projection 12-37
Eckert IV projection 12-39
Eckert V projection 12-41

and Plate Carrée projection 12-41

Index-3

Index

and Sinusoidal projection 12-41
Eckert VI projection 12-43
Eckert, Max

Eckert I projection 12-33
Eckert II projection 12-35
Eckert III projection 12-37
Eckert IV projection 12-39
Eckert V projection 12-41
Eckert VI projection 12-43

eckert1 12-33
eckert2 12-35
eckert3 12-37
eckert4 12-39
eckert5 12-41
eckert6 12-43
Edwards, Trystan

Trystan Edwards Cylindrical
projection 12-124

Egyptians 12-103
and Stereographic projection 12-119

elevation
defined 3-43
measuring 3-42

elevation data
from Web Map Service server 9-60

ellipsoid
as a geoid model 3-4
converting parameters 3-6
models for Earth 3-9
models for planets 3-46

Elliptical projection 12-97
EPSG:4326 9-16
eqa2grn

example 10-10
eqaazim 12-77
eqaconic 12-6
eqaconic projection 12-4
eqacylin 12-45
eqdazim 12-47
eqdconic 12-49

eqdconicstd 12-51
eqdcylin 12-53
Equal-Area Cylindrical projection 12-45

and Balthasart Cylindrical projection 12-45
and Behrmann Cylindrical projection 12-45
and Gall Orthographic projection 12-45
and Lambert Equal-Area Cylindrical

projection 12-45
and Trystan Edwards Cylindrical

projection 12-45
Equidistant Azimuthal projection 12-47

and Postel projection 12-47
and Zenithal projection 12-47

equidistant conic projection 12-49
Equidistant Conic projection

and Equidistant Azimuthal projection 12-49
12-51

and Equidistant Cylindrical projection 12-49
12-51

and Plate Carr\x8e e projection 12-49 12-51
equidistant conic standard projection 12-51
Equidistant Cylindrical projection 12-53

and Die Rechteckige Plattkarte 12-53
and Equirectangular projection 12-53
and Gall Isographic projection 12-53
and Plate Carr\x8e e projection 12-53
and Projection of Marinus 12-53
and Rectangular projection 12-53

Equirectangular projection 12-53
Erastosthenes 12-105
Etzlaub, Erhard 12-93
Everett 12-101

F
fillm

usage 4-68
filterm

example 7-24
fixing. See navigational fixing

Index-4

Index

Flat-Polar Quartic projection 12-89
flatearthpoly

example 7-17
flatplrp 12-87
flatplrq 12-89
flatplrs 12-91
fournier 12-55
Fournier II projection 12-55
Fournier projection 12-55
Fournier, Georges

Fournier II projection 12-55
frame. See map frame
framem

map frame and 4-48

G
Gall Isographic projection 12-57

and Equidistant Cylindrical projection 12-57
Gall Orthographic projection 12-59

and Equal-Area Cylindrical projection 12-59
and Peters projection 12-59

Gall projection 12-61
Gall Stereographic projection 12-61

and Braun Perspective Cylindrical
projection 12-61

Gall, James
Gall Orthographic projection 12-59
Gall Stereographic projection 12-61

gcwaypts
example 10-27

gcxsc
and scxsc 7-9

geodata. See geospatial data
geographic data structure

defined 2-21
Version 1 2-31

geographic data structures
constructing 2-25

geographic mean 10-2

geographic standard deviation 10-4
geographic statistics

calculating geographic mean 10-2
calculating geographic standard

deviation 10-4
equal-area coordinate system 10-9
equirectangular binning 10-7
histograms 10-7

geoid
availability for planets 3-46
converting ellipsoid parameters 3-6
defined 3-2
ellipsoid approximation 3-4
ellipsoid models for Earth 3-9
importance of in mapping 5-38

geoid vector. See ellipsoid vector
geolocated data grids

displaying 4-70
displaying image and surface coloring 4-74
displaying light shading 5-27
displaying shaded relief 5-31
format 2-46
geographic interpretation 2-49
transforming to regular 2-53

geospatial data
combining vector and raster 2-10
elevation grids 2-7
locating on Intenet 1-28
raster 2-7
types of 2-2
uncompressing and compressing 2-69
vector 2-4

geospatial data access
from and to Internet 2-54
via Intenet 1-28

geospatial data formats
reading and writing 2-54

geostruct
how to create a 2-25

geostructs

Index-5

Index

for polygons 2-30
getm

example 4-14
graphic scales 6-8

giso 12-57
globe 12-63
globe display 12-63

and Orthographic projection 12-63
Globe display

label rotation and 5-50
using 5-47

gnomonic 12-65
Gnomonic projection 12-65
goode 12-67
Goode Homolosine projection 12-67

and Mollweide projection 12-67
and Sinusoidal projection 12-67

Goode, J. Paul
Goode Homolosine projection 12-67

gortho 12-59
gradientm

example 7-43
graphic scales 6-8
graticule

as grid container 2-50
choosing resolution 4-71
defined 4-71

great circles
approximating tracks with rhumb

lines 10-27
calculating points of 3-39
defined 3-32
interactive 4-80

Great Soviet World Atlas 12-14
Greeks 12-103

and Stereographic projection 12-119
grids. See geolocated data grid. See map grid.

See regular data grid
grn2eqa

discussion 10-9

gstereo 12-61

H
hammer 12-69
Hammer projection 12-69

and Briesemeister projection 12-69
and Lambert Azimuthal Equal Area

projection 12-69
Hammer-Aitoff projection 12-69
handlem

example 4-85
Hassler, Ferdinand Rudolph

Polyconic projection 12-107 12-109
hatano 12-71
Hatano Asymmetrical Equal-Area

projection 12-71
Hatano, Masataka

Hatano Asymmetrical Equal-Area
projection 12-71

hidem
example of 4-85

histograms
geographic 10-7

histr
example 10-7

Homolographic projection 12-97
Homolosine projection 12-67
Hondius, Jodocus

Sinusoidal projection 12-117
hypsometric tints 6-24

I
inputm

example 4-78
waypoint definition with 10-29

inset maps
controlling scale 6-2
creating 6-2

Index-6

Index

interplat and interp1 7-7
interplon 7-7
interplon and interp1 7-7
interpm

interpolating vector data with 7-5
interpolation

along a path 7-41
latitude and longitude 7-5
latitudes example 7-7
longitudes 7-7

inverse projection. See map projections

K
Kavraisky V projection 12-73
Kavraisky VI projection 12-75
Kavraisky, V. V.

Kavraisky V projection 12-73
Kavraisky VI projection 12-75

kavrsky5 12-73
kavrsky6 12-75
KML file

with Web Map Service data 9-75
KML files

exporting 2-59
KML placemarks

from geographic points 2-60
kmlwrite, using 2-59
korea DEM 4-74

L
La Carte Parall\x8e logrammatique 12-53
lambcyln 12-83
lambert 12-79 12-81
Lambert Azimuthal Equal-Area projection 12-77
Lambert Conformal Conic projection 12-79 12-81

and Mercator projection 12-79 12-81
and Stereographic projection 12-79 12-81

Lambert Conformal Conic standard
projection 12-81

Lambert Equal-Area Azimuthal projection 12-20
Lambert Equal-Area Cylindrical projection 12-83

and Equal-Area Cylindrical projection 12-83
Lambert, Johann Heinrich 12-77

and Lambert Conformal Conic
projection 12-79 12-82

and Lambert Equal-Area Cylindrical
projection 12-83

Equal-Area Cylindrical projection 12-45
latitude

defined 3-11
latitude and longitude 3-11

interpolation 7-5
See also map frame, setting limits; map
limits

latitudes and longitudes
string formatting 3-28

lcolorbar
example 6-33

legs
course and distance of 10-30
in navigation 10-12

legs example 10-30
length units

choosing 3-16
light objects

lightmui 5-21
lightm

map light objects 5-34
line objects

displaying 4-60
line simplification 7-25
logical maps

defined 7-39
longitude

defined 3-12
ranges 3-12

Lorgna projection 12-77

Index-7

Index

los2
example 5-19

loximuth 12-85
Loximuthal projection 12-85
loxodromes. See rhumb lines

M
makesymbolspec

setting patch colors 6-8
map

definition 2-2
map axes

accessing default property values 4-16
accessing properties 4-14
Cartesian data and 4-45
changing projection of 4-46
example of properties 4-15
inset maps 6-2
resetting to default properties 4-35
setting properties 4-14
use of userdata 4-3

map display
3-D globes 12-63

map frame
adjusting for a new projection 4-34
controlling appearance 4-53
defined 4-48
full-world 4-48
resetting altitude 4-54
setting limits 4-48

map grid
controlling appearance 4-55
defined 4-55
displaying 4-55
resetting altitude 4-56

map legend. See referencing vector
map limits

adjusting for a new projection 4-34
setting 4-53

map objects
mobjects GUI 4-83

map origin 8-10
See also orientation vectors

map projections
2-D vs. 3-D 5-47
area 8-4
azimuthal 8-8
base 8-16
changing with geoshow 4-42
choosing 8-63
classifying distortion 8-3
computations 8-37
conformality 8-3
conic 8-7
cylindrical 8-5
defined 8-2
developable surface 8-3
distance 8-3
equidistance 8-3
equivalence 8-4
general properties 3-29
polyconic 8-7
pseudocylindrical projection

examples 8-6
shape 8-3
switching with setm 4-34
table of properties 8-63
vectors 8-43
visualizing distortions 8-27

map scale
between axes 6-2
when printing 6-35

map viewer
using 1-9

mapped objects
manipulating by name 4-83
reprojecting 4-39

Mapping Toolbox
help for 1-26

Index-8

Index

mapprofile
example 7-41

maps
printing 6-35

mapstructs
for polygons 2-30

maptriml
discussion 7-22

maptrimp
discussion 7-22

mapview
example 1-9

Marinus of Tyre 12-105
Equidistant Cylindrical projection 12-53

McBryde, F. Webster
and McBryde-Thomas Flat-Polar Parabolic

projection 12-87
and McBryde-Thomas Flat-Polar Quartic

projection 12-89
and McBryde-Thomas Flat-Polar Sinusoidal

projection 12-91
McBryde-Thomas Flat-Polar Parabolic

projection 12-87
McBryde-Thomas Flat-Polar Quartic

projection 12-89
McBryde-Thomas Flat-Polar Sinusoidal

projection 12-91
mean geographic location

example 10-2
meanm

example 10-4
mercator 12-93
Mercator Equal-Area projection 12-117
Mercator projection 12-93

bearings on 10-13
in navigational tracking 10-29
transverse aspect 8-16

Mercator, Gerardus 12-93
Equidistant Conic projection 12-49 12-52

MeridianLabel
use of 4-58

meridians
controlling display 4-55
defined 3-12

meshgrat
3-D example 4-74
example 2-52
use of 4-73

meshlsrm
coloring and shading terrain maps 5-31

miller 12-95
Miller Cylindrical projection 12-95

and Mercator projection 12-95
Miller, Osborn Maitland 12-95
minaxis

example 3-6
MLineException

usage 4-57
MLineLimit

usage 4-57
modsine 12-121
mollweid 12-97
Mollweide projection 12-97

and Goode Homolosine projection 12-97
and Sinusoidal projection 12-97

Mollweide, Carl B. 12-97
mouse interactions

with displayed maps 4-78
Murdoch I Conic projection 12-99
Murdoch III Minimum Error Conic

projection 12-101
Murdoch, Patrick

and Murdoch I Conic projection 12-99
and Murdoch III Minimum Error

projection 12-101
murdoch1 12-99
murdoch3 12-101

Index-9

Index

N
namem

example 4-84
NaN-separated polygons

topology of 2-30
National Geographic Society

and Robinson projection 12-115
navfix

example 10-18
navigation

calculating dead reckoning positions 10-33
calculating waypoints 10-27
connecting waypoints 10-29
course and distance legs 10-30
distance conventions 10-12
fixing position 10-13
functions for 10-11
retrieving time zone for longitude 10-38
units and conventions 10-12

navigational conventions
distance, speed, and angles 10-12

navigational fixing
example 10-18
position 10-13

navigational tracks
connecting waypoints 10-29
displaying 10-29
format 10-12

neworig
example 8-49

newpole
example 8-47

normal aspect 8-10
north arrows 6-14

O
objects

repackaging vector 7-2
oblique aspect 8-11

Ordinary Polyconic projection 12-107
orientation

projection 8-10
orientation vectors 8-10
origin property. See projection aspect
origin vectors. See orientation vectors
ortho 12-103
Orthographic projection 12-103
Orthophanic projection 12-115

P
panzoom 6-35
paperscale

example 6-35
ParallelLabel

use of 4-58
parallels

controlling display 4-55
defined 3-11

patch drawing functions
differences between 4-68

patch maps
functions for 4-68

patch objects
displaying 4-63

patchesm
usage 4-68

patchm
usage 4-68

pcarree 12-105
Peters projection 12-59
piloting. See navigational fixing
placemarks

from addresses 2-62
Plate Carrée projection 12-105
plotm

example 4-61
polcmap

example 6-29

Index-10

Index

poltical maps
coloring 6-29

polybool
cutting across dateline 7-17
example 7-12

polycon 12-107
polyconic projection

developed 8-7
Polyconic projection 12-107
Polyconic standard projection 12-109
polyconstd 12-109
polygon

buffer zones 7-19
displaying as line object 4-60
eliminating date line crossing 7-17
extracting segments 7-2
intersection points 7-10
set operations 7-12
surface area 7-11

polygon maps
functions for 4-68

polygon rings
topology conventions 2-30

polygon vertex ordering
and ring topology 2-30

polygons
displaying as patch objects 4-63
extracting segments 7-2
set operatons using polybool 7-12

polyjoin
example 7-3

polymerge
example 7-4

polysplit
example 7-2

polyxpoly
and date line 7-17
example 7-10

Postel, Guillaume
Equidistant Azimuthal projection 12-47

printing maps 6-35
projection. See map projections
projection aspect

normal 8-10
oblique 8-11
skew-oblique 8-15
transverse 8-11

Projection of Marinus 12-53
projections. See map projections
Ptolemy, Claudius

Bonne projection 12-16
Equidistant Conic projection 12-49 12-52

Putnins
P4 and Craster projections 12-31

Putnins P4 projection 12-31
Putnins P5 projection 12-111
Putnins, Reinholds V. 12-111
putnins5 12-111

Q
quartic 12-113
Quartic Authalic projection 12-113
quiverm

description 6-21

R
radius of planets 3-46
Rand McNally

and Robinson projection 12-115
raster geodata

defined 2-7
georeferencing 2-38
representing 2-38

raster maps. See raster geodata
reckon

example 3-39
reckoning

position ahead 3-38

Index-11

Index

Rectangular projection 12-53
referencing matrix

defined 2-38
for image 1-24

referencing vector
defined 2-38
refmat variable 2-39

regular data grids 2-39
defined 2-39
determining size with scaling 2-45
displaying 4-70
displaying image and surface coloring 4-74
displaying shaded relief 5-31
geographic interpretation 2-43
global 2-39
precomputing size 2-45
See also geolocated data grids

reprojecting maps
limitations on 4-39

rhumb lines
approximating great circle tracks with 10-27
calculating points 3-39
defined 3-32

rhxrh
and scxsc 7-9

robinson 12-115
Robinson projection 12-115
Robinson, Arthur H.

Robinson projection 12-115
rotatem

example 8-46
Ruysch, Johannes

Equidistant Conic projection 12-49 12-52

S
Sanson-Flamsteed projection 12-117
scale

between axes 6-2
printing maps to 6-35

scaleruler
example 6-8

scatterm
description 6-21
proportional symbol maps 10-8

scircle1
example 3-34

scircle2
example 3-34

scircleg
example 4-80

scxsc
and gscxsc 7-9

selectors
with shapefile data 2-32

setm
example 4-14
graphic scales 6-8
map frame 4-48
map grid 4-55

setpostn
example 2-45

shaded relief maps 5-31
shaperead

data selectors 2-32
showm

example 4-85
Siemon, Karl 12-86

Quartic Authalic projection 12-113
simple conic projection 12-49
Simple Cylindrical projection 12-105
simplification of map data 7-25
sinusoid 12-117
Sinusoidal projection 12-117
sizem

example 2-45
skew-oblique aspect 8-15
sllipsoidal conic projection 12-51
small circles

defined 3-33

Index-12

Index

interactive 4-80
spatial errors

in maps 8-27
speed units

format for navigation functions 10-12
Stab-Werner projection 12-134
Stabius, Johannes

Werner projection 12-134
standard deviation of geographic data 10-4
stdist

defined 10-6
stdm

defined 10-4
stem plot

example 6-21
stem3m

description 6-21
stereo 12-119
Stereographic projection 12-119
surface area

accessing from almanac 3-47
measuring polygons 7-11

surface aspect
defined 7-43

surface gradient
defined 7-43

surface objects
displaying 4-70

surface slope
defined 7-43

surflm
lighting terrain maps 5-27

surflsrm
coloring and shading terrain maps 5-31

Sylvanus, Bernardus
Bonne projection 12-16

symbol plot
example 6-23

symbol specification. See symbolspecs
symbolspecs

definition Glossary-22
example for roads 1-18
setting patch colors 6-8
with geoshow 4-10
with polcmap 4-10

T
texture mapping

onto digital elevation maps 5-38
Thales

Gnomonic projection 12-65
thematic maps

3-D bar graphs 6-21
comet maps 6-21
quiver maps 6-21
scatter maps 6-21
tissot maps 6-21

Thomas, Paul D.
and McBryde-Thomas Flat-Polar Parabolic

projection 12-87
and McBryde-Thomas Flat-Polar Quartic

projection 12-89
and McBryde-Thomas Flat-Polar Sinusoidal

projection 12-91
tightmap

printing maps 6-35
time zones

for navigation 10-38
navigational 10-36

timezone
example 10-39

tissot
description 6-21
example 8-27

Tissot Modified Sinusoidal projection 12-121
Tissot, N. A.

Tissot Modified Sinusoidal projection 12-121
Tobler, Waldo R. 12-86
topo DEM 2-7

Index-13

Index

topographical maps. See digital elevation maps
track

description 10-29
track1

example 3-39
track2

example 4-62
vs. track1 3-39

trackg
example 4-80

tracks. See great circles. See rhumb lines
tranmerc 12-122
transformation of coordinate system 8-45

See also coordinate transformation
transverse aspect 8-11
transverse Mercator projection

example 8-60
Transverse Mercator projection 12-122

and UTM 12-122
trimming data 7-21
trimming map data

attribute filtering 7-24
trystan 12-124
Trystan Edwards Cylindrical projection 12-124

and Equal-Area Cylindrical
projection 12-124

Tunhuang star chart 12-93

U
unitsratio

examples 3-17
Universal Polar Stereographic projection 12-126

and UTM 12-126
limits 8-51

Universal Transverse Mercator system 12-127
and Gauss-Kr\x9f ger 12-127
and Transverse Mercator projection 12-127
military mapping 12-127

ups 12-126

UPS projection 12-126
usamap

using 4-7
userdata

in map axes 4-3
utm 12-127
UTM

description 8-51
See also Universal Transverse Mercator

system
ellipsoid for 8-59
system 12-127
zone 8-59

V
Van der Grinten I projection 12-128
Van der Grinten, Alphons J.

Van der Grinten I projection 12-128
vector data. See vector geodata
vector geodata

calculating intersections 7-8
defined 2-4
geographic interpolation 7-5
representing 2-13
simplifying/reducing 7-25
structures 2-21
trimming data to a region 7-21
trimming vector via attributes 7-24

vector maps
displaying as lines 4-60
displaying as patches 4-63
projected directions 8-43

vertical exaggeration
daspectm 5-22

Vertical Perspective Azimuthal projection 12-130
and Orthographic projection 12-130

vfwdtran
and direction vectors 8-44

vgrint1 12-128

Index-14

Index

viewshed
defined 5-20
example 5-20

volume of planets 3-47
von Hammer, H. H. Ernst

Hammer projection 12-69
vperspec 12-130

W
Wagner I projection 12-75
Wagner IV projection 12-132
Wagner, Karlheinz

Wagner I projection 12-75
Wagner IV projection 12-132

wagner4 12-132
waypoints

calculating 10-27
connecting 10-29
in navigation 10-12
selecting with mouse 10-29

Web Map Service servers
animating data layers 9-49
coordinate reference system codes 9-16
creating a composite map 9-39 9-42 9-44
introduction 9-2
layers outside the WMS Database 9-77
modifying a map request 9-34
retrieving a map 9-15
retrieving a map legend 9-19
retrieving elevation data 9-60
saving favorite layers 9-70
synchronizing a layer 9-13
troubleshooting 9-79
writing KML files 9-75

WebMapServer.getMap
example 9-28

werner 12-134
Werner projection 12-134
Werner, Johannes

Werner projection 12-134
wetch 12-136
Wetch Cylindrical projection 12-136

and Central Cylindrical projection 12-136
Wetch, J.

Wetch Cylindrical projection 12-136
wiechel 12-138
Wiechel projection 12-138
Wiechel, H.

Wiechel projection 12-138
winkel 12-140
Winkel I projection 12-140

and Eckert V projection 12-140
and Equidistant Cylindrical

projection 12-140
and Sinusoidal projection 12-140

Winkel, Oswald
Winkel I projection 12-140

WMS Database 9-8
searching 9-9 9-11

WMSCapabilities
example 9-72

wmsfind
example 9-9

wmsinfo
example 9-72

WMSLayer.refine
example 9-11 to 9-12

WMSMapRequest
example 9-34

wmsread
example 9-16 to 9-17

wmsupdate
example 9-13

worldfiles
creating from mapview 1-23
reading with worldfileread 1-24

worldmap
introduction to 1-4
using 4-5

Index-15

Index

Wright projection 12-93
Wright, Edward 12-93

Y
Young, A. E.

Breusing projection 12-20

Z
Zenithal Equal-Area projection 12-77
Zenithal Equivalent projection 12-77

Index-16

	toc
	Getting Started
	Product Overview
	Dedication and Acknowledgment
	Your First Maps
	See the World
	Tour Boston with the Map Viewer
	A Map Viewer Session

	Getting More Help
	Ways to Get Mapping Toolbox Help
	Consulting Release Notes

	Mapping Toolbox Demos and Data
	Available Demos
	Creating Map Displays
	Using Geospatial Analysis Tools and Formats
	Working with Georeferenced Images
	Interacting with Web Map Service (WMS) Servers

	Locating Geospatial Data

	Understanding Map Data
	Maps and Map Data
	What Is a Map?
	What Is Geospatial Data?

	Types of Map Data Handled by the Toolbox
	Vector Geodata
	A Look at Vector Data

	Raster Geodata
	Digital Elevation Data
	Remotely Sensed Image Data
	A Look at Raster Data

	Combining Vector and Raster Geodata
	Viewing Raster and Vector Data on the Same Map

	Understanding Vector Geodata
	Points, Lines, and Polygons
	Displaying a Point
	Displaying a Line
	Displaying a Polygon

	Segments Versus Polygons
	Mapping Toolbox Geographic Data Structures
	Shapefiles
	The Contents of Geographic Data Structures
	Examining a Geographic Data Structure
	How to Construct Geographic Data Structures
	Mapping Toolbox Version 1 Display Structures

	Selecting Data to Read with the shaperead Function
	Example 1: Predicate Function in Separate File
	Example 2: Predicate as Function Handle
	Example 3: Predicate as Anonymous Function
	Example 4: Predicate (Anonymous Function) Defined Within Cell Ar
	Example 5: Parameterizing the Selector; Predicate as Nested Func

	Understanding Raster Geodata
	Georeferencing Raster Data
	Referencing Objects
	Referencing Matrices
	Referencing Vectors

	Regular Data Grids
	Constructing a Global Data Grid
	Computing Map Limits for Regular Data Grids
	Geographic Interpretation of Grid Cells
	Precomputing the Size of a Data Grid

	Geolocated Data Grids
	Geolocated Grid Format
	Geographic Interpretations of Geolocated Grids

	Reading and Writing Geospatial Data
	Functions that Read and Write Geospatial Data
	Exporting Vector Geodata
	Exporting KML Files for Viewing in Earth Browsers

	Functions That Read and Write Files in Compressed Formats

	Understanding Geospatial Geometry
	Understanding Spherical Coordinates
	Spheres, Spheroids, and Geoids
	Geoid and Ellipsoid
	Mapping the Geoid

	The Ellipsoid Vector
	Mapping Toolbox Ellipsoid Management
	Functions that Define Ellipsoid Vectors
	What Is the “Correct” Ellipsoid Vector?

	Understanding Latitude and Longitude
	Understanding Angles, Directions, and Distances
	Positions, Azimuths, Headings, Distances, Length, and Ranges
	Working with Length and Distance Units
	Choosing Units of Length
	Converting Units of Length
	Computing Conversion Factors

	Working with Angles: Units and Representations
	Radians and Degrees
	Default and Variable Angle Units
	Degrees, Minutes, and Seconds
	Converting Angle Units that Vary at Run Time

	Working with Distances on the Sphere
	Examples of Spherical-Linear Distance Conversions
	Range as an Angle in the distance and reckon Functions
	Summary: Available Distance and Angle Conversion Functions

	Angles as Binary and Formatted Numbers
	Formatting Latitudes and Longitudes as Strings

	Understanding Map Projections
	What Is a Map Projection?
	Forward and Inverse Projection
	Projection Distortions

	Great Circles, Rhumb Lines, and Small Circles
	Great Circles
	Rhumb Lines
	Small Circles
	Computing Small Circles

	Directions and Areas on the Sphere and Spheroid
	About Azimuths
	Reckoning — The Forward Problem
	Calculating Tracks — Great Circles and Rhumb Lines

	Distance, Azimuth, and Back-Azimuth (the Inverse Problem)
	Calculating Azimuth and Elevation

	Measuring Area of Spherical Quadrangles

	Planetary Almanac Data

	Creating and Viewing Maps
	Introduction to Mapping Graphics
	Using worldmap and usamap
	Continent, Country, Region, and State Maps Made Easy
	Setting Background Colors for Map Displays

	Using worldmap
	Using usamap

	Axes for Drawing Maps
	What Is a Map Axes?
	Using axesm
	Accessing and Manipulating Map Axes Properties
	Using the Map Limit Properties
	Example 1: Robinson Projection
	Example 2: Cylindrical Projection
	Example 3: Conic Projection
	Example 4: Southern Hemisphere Conic Projection
	Example 5: North-Polar Azimuthal Projection
	Example 6: South-Polar Azimuthal Projection
	Example 7: Equatorial Azimuthal Projection
	Example 8: General Azimuthal Projection
	Example 9: Oblique Mercator Projection
	General Applicability of Map Limit Properties
	Using the Map Limit Properties with setm

	Switching Between Projections
	Moving Meridian and Parallel Labels
	Resetting Frame Limits

	Projected and Unprojected Graphic Objects
	Auto-Reprojection of Mapped Objects and Its Limitations
	Changing Map Projections when Using geoshow
	Placing Geographic and Nongeographic Objects in a Map Axes

	Controlling Map Frames and Grids
	The Map Frame
	Map and Frame Limits

	The Map Grid
	Grid Spacing
	Grid Layering
	Limiting Grid Lines
	Labeling Grids

	Displaying Vector Data with Mapping Toolbox Functions
	Programming and Scripting Map Construction
	Displaying Vector Data as Points and Lines
	Displaying Vector Maps as Lines or Patches
	Summary of Polygon Mapping Functions

	Displaying Data Grids
	Types of Data Grids and Raster Display Functions
	Fitting Gridded Data to the Graticule
	Using Raster Data to Create 3-D Displays

	Interacting with Displayed Maps
	Picking Locations Interactively
	Defining Small Circles and Tracks Interactively
	Interactive Text Annotation

	Working with Objects by Name
	Determining and Manipulating Object Names

	Making Three-Dimensional Maps
	Sources of Terrain Data
	Digital Terrain Elevation Data from NGA
	Digital Elevation Model Files from USGS
	Determining What Elevation Data Exists for a Region
	Using dteds, usgsdems, and gtopo30s to Identify DEM Files
	Mapping a Single DTED File with the DTED Function
	Mapping Multiple DTED Files with the DTED Function

	Reading Elevation Data Interactively
	Extracting DEM Data with demdataui

	Determining and Visualizing Visibility Across Terrain
	Computing Line of Sight with los2

	Shading and Lighting Terrain Maps
	Lighting a Terrain Map Constructed from a DTED File
	Lighting a Global Terrain Map with lightm and lightmui
	Surface Relief Shading
	Creating Monochrome Shaded Relief Maps Using surflm

	Colored Surface Shaded Relief
	Coloring Shaded Relief Maps and Viewing Them in 3-D

	Relief Mapping with Light Objects
	Colored 3-D Relief Maps Illuminated with Light Objects

	Draping Data on Elevation Maps
	Draping Geoid Heights over Topography
	Draping Data over Terrain with Different Gridding
	Draping via Converting a Regular Grid to a Geolocated Data Grid
	Draping a Geolocated Grid on Regular Data Grid via Texture Mappi

	Working with the Globe Display
	What Is the Globe Display?
	The Globe Display Compared with the Orthographic Projection
	Using Opacity and Transparency in Globe Displays
	Over-the-Horizon 3-D Views Using Camera Positioning Functions
	Displaying a Rotating Globe

	Customizing and Printing Maps
	Inset Maps
	Graphic Scales
	North Arrows
	Thematic Maps
	What Is a Thematic Map?
	Choropleth Maps
	Special Thematic Mapping Functions
	Stem Maps
	Contour Maps
	Scatter Maps

	Using Colormaps and Colorbars
	Colormap for Terrain Data
	Contour Colormaps
	Colormaps for Political Maps
	Labeling Colorbars
	Editing Colorbars

	Printing Maps to Scale

	Manipulating Geospatial Data
	Manipulating Vector Geodata
	Repackaging Vector Objects
	Extracting and Joining Polygons or Line Segments

	Matching Line Segments
	Linking Line Segments into Polygons

	Geographic Interpolation of Vectors
	Interpolating Vectors to Achieve a Minimum Point Density
	Interpolating Coordinates at Specific Locations

	Vector Intersections
	Polygon Area
	Overlaying Polygons with Set Logic
	Overlaying Polygons with the polybool Function

	Cutting Polygons at the Date Line
	Removing Discontinuities from a Small Circle

	Building Buffer Zones
	Generating a Buffer Around a Polygon

	Trimming Vector Data to a Rectangular Region
	Trimming Vectors to Form Lines and Polygons

	Trimming Vector Data to an Arbitrary Region
	Simplifying Vector Coordinate Data
	Using reducem to Simplify Lines

	Manipulating Raster Geodata
	Vector-to-Raster Data Conversion
	Creating Data Grids from Vector Data
	Using a GUI to Rasterize Polygons

	Data Grids as Logical Variables
	Obtaining the Area Occupied by a Logical Grid Variable

	Data Grid Values Along a Path
	Using the mapprofile Function

	Data Grid Gradient, Slope, and Aspect
	Computing Gradient Data from a Regular Data Grid

	Using Map Projections and Coordinate Systems
	What Is a Map Projection?
	Quantitative Properties of Map Projections
	The Three Main Families of Map Projections
	Unwrapping the Sphere to a Plane
	Cylindrical Projections
	Pseudocylindrical Map Projections

	Conic Projections
	Azimuthal Projections

	Projection Aspect
	The Orientation Vector
	Exploring Projection Aspect

	Projection Parameters
	Projection Characteristics Maps Can Have
	Determining Projection Parameters

	Visualizing and Quantifying Projection Distortions
	Displays of Spatial Error in Maps
	Visualizing Projection Distortions via Tissot Indicatrices
	Visualizing Projection Distortions via Isolines

	Quantifying Map Distortions at Point Locations
	Using distortcalc to Determine Map Projection Geometric Distorti

	Accessing, Computing, and Inverting Map Projection Data
	Accessing Projected Coordinate Data
	Retrieving Projected Coordinates from a Figure

	Projecting Coordinates Without a Map Axes
	Using mfwdtran with a Map Projection Structure

	Inverse Map Projection
	Recovering Geodetic Coordinates with minvtran
	Obtaining Angular Directions in a Projection Space

	Coordinate Transformations
	Reorienting Vector Data with rotatem
	Reorienting Gridded Data with neworig

	Working with the UTM System
	What Is the Universal Transverse Mercator System?
	Understanding UTM Parameters
	Setting UTM Parameters with a GUI
	Working in UTM Without a Map Axes
	More on utmzone

	Mapping Across UTM Zones

	Summary and Guide to Projections

	Creating Web Map Service Maps
	Introduction to Web Map Service
	What Web Map Service Servers Provide
	Basic WMS Terminology

	Basic Workflow for Creating WMS Maps
	Workflow Summary
	Creating a Map of Elevation in Europe

	Searching the WMS Database
	Introduction to the WMS Database
	Finding Temperature Data

	Refining Your Search
	Refining by Text String
	Refining by Geographic Limits

	Updating Your Layer
	Retrieving Your Map
	Ways to Retrieve Your Map
	Understanding Coordinate Reference System Codes
	Retrieving Your Map with wmsread
	Setting Optional Parameters
	Adding a Legend to Your Map
	Retrieving Your Map with WebMapServer.getMap

	Modifying Your Request
	Setting the Geographic Limits and Time
	Manually Editing a URL

	Overlaying Multiple Layers
	Creating a Composite Map of Multiple Layers from One Server
	Combining Layers from One Server with Data from Other Sources
	Draping Topography and Ortho-Imagery Layers over a Digital Eleva

	Animating Data Layers
	Creating Movie of Terra/MODIS Images
	Creating an Animated GIF File
	Animating Time-Lapse Radar Observations
	Displaying Animation of Radar Images over GOES Backdrop

	Retrieving Elevation Data
	Merge Elevation Data with Rasterized Vector Data
	Display a Merged Elevation and Bathymetry Layer (SRTM30 Plus)
	Drape a Landsat Image onto Elevation Data

	Saving Favorite Servers
	Exploring Other Layers from a Server
	Writing a KML File
	Searching for Layers Outside the Database
	Hosting Your Own WMS Server
	Common Problems with WMS Servers
	Connection Errors
	Time-Out Error
	Server No Longer Provides Full WMS Services
	HTTP Response Code 500
	WMSServlet Removed

	Wrong Scale
	Problems with Geographic Limits
	Latlim and Lonlim in Descending Order
	Limits Exceed Bounds

	Problems with Server Changing LayerName
	Non-EPSG:4326 Coordinate Reference Systems
	Map Not Returned
	Blank Map Returned
	HTML File Returned
	XML File Returned

	Unsupported WMS Version
	Other Unrecoverable Server Errors

	Mapping Applications
	Geographic Statistics
	Statistics for Point Locations on a Sphere
	Geographic Means
	Geographic Standard Deviation
	The Meaning of stdm
	The Meaning of stdist

	Equal-Areas in Geographic Statistics
	Geographic Histograms
	Converting to an Equal-Area Coordinate System

	Navigation
	What Is Navigation?
	Conventions for Navigational Functions
	Units
	Navigational Track Format

	Fixing Position
	Some Possible Situations
	Using navfix
	A Numerical Example of Using navfix

	Planning the Shortest Path
	Track Laydown – Displaying Navigational Tracks
	Dead Reckoning
	Drift Correction
	Time Zones

	Map Projections Reference
	Cylindrical Projections
	Pseudocylindrical Projections
	Conic Projections
	Polyconic and Pseudoconic Projections
	Azimuthal, Pseudoazimuthal, and Modified Azimuthal Projections
	UTM and UPS Systems
	3-D Globe Display

	Map Projections — Alphabetical List
	Glossary
	Bibliography
	Examples
	Your First Maps
	Understanding Vector Geodata
	Understanding Raster Geodata
	Combining Vector and Raster Geodata
	Geolocated Data Grids
	Exporting Vector Geodata
	Understanding Geospatial Geometry
	Creating and Viewing Maps
	Making Three-Dimensional Maps
	Customizing and Printing Maps
	Using Colormaps and Colorbars
	Vector Data Manipulation
	Raster Data Manipulation
	Projections and Transformations
	Web Map Service Maps
	Navigation

	Index

	tables
	Fields in a Geographic Data Structure
	Functions that Directly Convert Angles, Lengths, and Spherical D

